A line segment has endpoints at [tex]$(-4, -6)$[/tex] and [tex]$(-6, 4)$[/tex]. Which reflection will produce an image with endpoints at [tex]$(4, -6)$[/tex] and [tex]$(6, 4)$[/tex]?

A. a reflection of the line segment across the [tex]$x$[/tex]-axis
B. a reflection of the line segment across the [tex]$y$[/tex]-axis
C. a reflection of the line segment across the line [tex]$y=x$[/tex]
D. a reflection of the line segment across the line [tex]$y=-x$[/tex]



Answer :

To determine which reflection will transform the endpoints of the line segment from [tex]\((-4, -6)\)[/tex] and [tex]\((-6, 4)\)[/tex] to [tex]\((4, -6)\)[/tex] and [tex]\((6, 4)\)[/tex], we need to consider the effect each type of reflection has on the coordinates of points.

1. Reflection across the x-axis:

For a point [tex]\((x, y)\)[/tex], reflection across the x-axis transforms the point to [tex]\((x, -y)\)[/tex].

- Original endpoints: [tex]\((-4, -6)\)[/tex] and [tex]\((-6, 4)\)[/tex]
- After reflection across the x-axis:
[tex]\[ (-4, -6) \rightarrow (-4, 6) \][/tex]
[tex]\[ (-6, 4) \rightarrow (-6, -4) \][/tex]

These reflected points, [tex]\((-4, 6)\)[/tex] and [tex]\((-6, -4)\)[/tex], do not match [tex]\((4, -6)\)[/tex] and [tex]\((6, 4)\)[/tex].

2. Reflection across the y-axis:

For a point [tex]\((x, y)\)[/tex], reflection across the y-axis transforms the point to [tex]\((-x, y)\)[/tex].

- Original endpoints: [tex]\((-4, -6)\)[/tex] and [tex]\((-6, 4)\)[/tex]
- After reflection across the y-axis:
[tex]\[ (-4, -6) \rightarrow (4, -6) \][/tex]
[tex]\[ (-6, 4) \rightarrow (6, 4) \][/tex]

These reflected points, [tex]\((4, -6)\)[/tex] and [tex]\((6, 4)\)[/tex], match the desired endpoints.

3. Reflection across the line [tex]\(y = x\)[/tex]:

For a point [tex]\((x, y)\)[/tex], reflection across the line [tex]\(y = x\)[/tex] transforms the point to [tex]\((y, x)\)[/tex].

- Original endpoints: [tex]\((-4, -6)\)[/tex] and [tex]\((-6, 4)\)[/tex]
- After reflection across the line [tex]\(y = x\)[/tex]:
[tex]\[ (-4, -6) \rightarrow (-6, -4) \][/tex]
[tex]\[ (-6, 4) \rightarrow (4, -6) \][/tex]

These reflected points, [tex]\((-6, -4)\)[/tex] and [tex]\((4, -6)\)[/tex], do not match [tex]\((4, -6)\)[/tex] and [tex]\((6, 4)\)[/tex].

4. Reflection across the line [tex]\(y = -x\)[/tex]:

For a point [tex]\((x, y)\)[/tex], reflection across the line [tex]\(y = -x\)[/tex] transforms the point to [tex]\((-y, -x)\)[/tex].

- Original endpoints: [tex]\((-4, -6)\)[/tex] and [tex]\((-6, 4)\)[/tex]
- After reflection across the line [tex]\(y = -x\)[/tex]:
[tex]\[ (-4, -6) \rightarrow (6, 4) \][/tex]
[tex]\[ (-6, 4) \rightarrow (-4, -6) \][/tex]

These reflected points, [tex]\((6, 4)\)[/tex] and [tex]\((-4, -6)\)[/tex], do not match [tex]\((4, -6)\)[/tex] and [tex]\((6, 4)\)[/tex].

By considering all the reflections and their effects on the given points, the reflection that produces the endpoints [tex]\((4, -6)\)[/tex] and [tex]\((6, 4)\)[/tex] from the original endpoints [tex]\((-4, -6)\)[/tex] and [tex]\((-6, 4)\)[/tex] is the reflection across the y-axis. Therefore, the correct answer is:

A reflection of the line segment across the y-axis.