The dimensions and number of animals are given for different corrals.

\begin{tabular}{|l|l|l|l|}
\hline
Corral & \multicolumn{1}{|c|}{Length} & \multicolumn{1}{|c|}{Width} & \multicolumn{1}{c|}{Number of Animals} \\
\hline
1 & 50 meters & 40 meters & 110 \\
\hline
2 & 60 meters & 35 meters & 115 \\
\hline
3 & 55 meters & 45 meters & 125 \\
\hline
4 & 65 meters & 40 meters & 130 \\
\hline
\end{tabular}

The population constraints state that each corral should have at least 20 square meters for each animal.

Which corral meets this requirement?

A. Corral 1
B. Corral 2
C. Corral 3
D. Corral 4



Answer :

To determine which corral meets the requirement of having at least 20 square meters per animal, we'll evaluate each corral step-by-step and calculate the available space per animal.

1. Corral 1
- Length: 50 meters
- Width: 40 meters
- Number of Animals: 110

Calculate the area:
[tex]\[ \text{Area} = 50 \times 40 = 2000 \text{ square meters} \][/tex]

Calculate the space per animal:
[tex]\[ \text{Space per Animal} = \frac{2000 \text{ square meters}}{110 \text{ animals}} \approx 18.18 \text{ square meters} \][/tex]

Space per animal (18.18) is less than 20 square meters. Therefore, Corral 1 does not meet the requirement.

2. Corral 2
- Length: 60 meters
- Width: 35 meters
- Number of Animals: 115

Calculate the area:
[tex]\[ \text{Area} = 60 \times 35 = 2100 \text{ square meters} \][/tex]

Calculate the space per animal:
[tex]\[ \text{Space per Animal} = \frac{2100 \text{ square meters}}{115 \text{ animals}} \approx 18.26 \text{ square meters} \][/tex]

Space per animal (18.26) is less than 20 square meters. Therefore, Corral 2 does not meet the requirement.

3. Corral 3
- Length: 55 meters
- Width: 45 meters
- Number of Animals: 125

Calculate the area:
[tex]\[ \text{Area} = 55 \times 45 = 2475 \text{ square meters} \][/tex]

Calculate the space per animal:
[tex]\[ \text{Space per Animal} = \frac{2475 \text{ square meters}}{125 \text{ animals}} = 19.8 \text{ square meters} \][/tex]

Space per animal (19.8) is less than 20 square meters. Therefore, Corral 3 does not meet the requirement.

4. Corral 4
- Length: 65 meters
- Width: 40 meters
- Number of Animals: 130

Calculate the area:
[tex]\[ \text{Area} = 65 \times 40 = 2600 \text{ square meters} \][/tex]

Calculate the space per animal:
[tex]\[ \text{Space per Animal} = \frac{2600 \text{ square meters}}{130 \text{ animals}} = 20 \text{ square meters} \][/tex]

Space per animal (20) is exactly at 20 square meters. Therefore, Corral 4 meets the requirement.

Given these calculations, the corral that meets the requirement is:

D. Corral 4