Answer :
To find the values of [tex]\( b, c, e, \)[/tex] and [tex]\( g \)[/tex], we need to simplify the given square root expressions.
1. For the expression [tex]\(\sqrt{50 x^2}\)[/tex]:
[tex]\[ \sqrt{50 x^2} = \sqrt{25 \cdot 2 \cdot x^2} \][/tex]
We can simplify this as:
[tex]\[ \sqrt{50 x^2} = \sqrt{25} \cdot \sqrt{2} \cdot \sqrt{x^2} = 5 x \sqrt{2} \][/tex]
Therefore,
[tex]\[ 5 x \sqrt{b} = 5 x \sqrt{2} \][/tex]
This means:
[tex]\[ b = 2 \][/tex]
2. For the expression [tex]\(\sqrt{32 x}\)[/tex]:
[tex]\[ \sqrt{32 x} = \sqrt{16 \cdot 2 \cdot x} \][/tex]
We can simplify this as:
[tex]\[ \sqrt{32 x} = \sqrt{16} \cdot \sqrt{2} \cdot \sqrt{x} = 4 \sqrt{2} \sqrt{x} = 4 \sqrt{2 x} \][/tex]
Therefore,
[tex]\[ c \sqrt{2 x} = 4 \sqrt{2 x} \][/tex]
This means:
[tex]\[ c = 4 \][/tex]
3. For the expression [tex]\(\sqrt{18 n}\)[/tex]:
[tex]\[ \sqrt{18 n} = \sqrt{9 \cdot 2 \cdot n} \][/tex]
We can simplify this as:
[tex]\[ \sqrt{18 n} = \sqrt{9} \cdot \sqrt{2} \cdot \sqrt{n} = 3 \sqrt{2} \sqrt{n} = 3 \sqrt{2 n} \][/tex]
Therefore,
[tex]\[ e \sqrt{2 n} = 3 \sqrt{2 n} \][/tex]
This means:
[tex]\[ e = 3 \][/tex]
4. For the expression [tex]\(\sqrt{72 x^2}\)[/tex]:
[tex]\[ \sqrt{72 x^2} = \sqrt{36 \cdot 2 \cdot x^2} \][/tex]
We can simplify this as:
[tex]\[ \sqrt{72 x^2} = \sqrt{36} \cdot \sqrt{2} \cdot \sqrt{x^2} = 6 x \sqrt{2} \][/tex]
Therefore,
[tex]\[ g x \sqrt{2} = 6 x \sqrt{2} \][/tex]
This means:
[tex]\[ g = 6 \][/tex]
So the values are:
[tex]\[ b = 2, \quad c = 4, \quad e = 3, \quad g = 6 \][/tex]
1. For the expression [tex]\(\sqrt{50 x^2}\)[/tex]:
[tex]\[ \sqrt{50 x^2} = \sqrt{25 \cdot 2 \cdot x^2} \][/tex]
We can simplify this as:
[tex]\[ \sqrt{50 x^2} = \sqrt{25} \cdot \sqrt{2} \cdot \sqrt{x^2} = 5 x \sqrt{2} \][/tex]
Therefore,
[tex]\[ 5 x \sqrt{b} = 5 x \sqrt{2} \][/tex]
This means:
[tex]\[ b = 2 \][/tex]
2. For the expression [tex]\(\sqrt{32 x}\)[/tex]:
[tex]\[ \sqrt{32 x} = \sqrt{16 \cdot 2 \cdot x} \][/tex]
We can simplify this as:
[tex]\[ \sqrt{32 x} = \sqrt{16} \cdot \sqrt{2} \cdot \sqrt{x} = 4 \sqrt{2} \sqrt{x} = 4 \sqrt{2 x} \][/tex]
Therefore,
[tex]\[ c \sqrt{2 x} = 4 \sqrt{2 x} \][/tex]
This means:
[tex]\[ c = 4 \][/tex]
3. For the expression [tex]\(\sqrt{18 n}\)[/tex]:
[tex]\[ \sqrt{18 n} = \sqrt{9 \cdot 2 \cdot n} \][/tex]
We can simplify this as:
[tex]\[ \sqrt{18 n} = \sqrt{9} \cdot \sqrt{2} \cdot \sqrt{n} = 3 \sqrt{2} \sqrt{n} = 3 \sqrt{2 n} \][/tex]
Therefore,
[tex]\[ e \sqrt{2 n} = 3 \sqrt{2 n} \][/tex]
This means:
[tex]\[ e = 3 \][/tex]
4. For the expression [tex]\(\sqrt{72 x^2}\)[/tex]:
[tex]\[ \sqrt{72 x^2} = \sqrt{36 \cdot 2 \cdot x^2} \][/tex]
We can simplify this as:
[tex]\[ \sqrt{72 x^2} = \sqrt{36} \cdot \sqrt{2} \cdot \sqrt{x^2} = 6 x \sqrt{2} \][/tex]
Therefore,
[tex]\[ g x \sqrt{2} = 6 x \sqrt{2} \][/tex]
This means:
[tex]\[ g = 6 \][/tex]
So the values are:
[tex]\[ b = 2, \quad c = 4, \quad e = 3, \quad g = 6 \][/tex]