Given [tex]$\sin(u) = -\frac{7}{25}$[/tex] and [tex]$\cos(v) = -\frac{4}{5}$[/tex], what is the exact value of [tex]$\cos(u - v)$[/tex] if both angles are in quadrant III?

A. [tex]$-\frac{117}{125}$[/tex]
B. [tex]$-\frac{24}{25}$[/tex]
C. [tex]$\frac{3}{5}$[/tex]
D. [tex]$\frac{117}{125}$[/tex]



Answer :

Certainly! Let's solve this problem step-by-step.

We are given that [tex]\(\sin(u) = -\frac{7}{25}\)[/tex] and [tex]\(\cos(v) = -\frac{4}{5}\)[/tex], and both [tex]\(u\)[/tex] and [tex]\(v\)[/tex] are in quadrant III. In quadrant III, both sine and cosine functions are negative.

### Step 1: Finding [tex]\(\cos(u)\)[/tex]

To find [tex]\(\cos(u)\)[/tex], we use the Pythagorean identity:

[tex]\[ \sin^2(u) + \cos^2(u) = 1 \][/tex]

Given [tex]\(\sin(u) = -\frac{7}{25}\)[/tex]:

[tex]\[ \left( -\frac{7}{25} \right)^2 + \cos^2(u) = 1 \][/tex]

[tex]\[ \frac{49}{625} + \cos^2(u) = 1 \][/tex]

[tex]\[ \cos^2(u) = 1 - \frac{49}{625} \][/tex]

[tex]\[ \cos^2(u) = \frac{625}{625} - \frac{49}{625} \][/tex]

[tex]\[ \cos^2(u) = \frac{576}{625} \][/tex]

Since [tex]\(u\)[/tex] is in the third quadrant, [tex]\(\cos(u)\)[/tex] is negative:

[tex]\[ \cos(u) = -\sqrt{\frac{576}{625}} = -\frac{24}{25} \][/tex]

### Step 2: Finding [tex]\(\sin(v)\)[/tex]

We now use the Pythagorean identity to find [tex]\(\sin(v)\)[/tex]:

[tex]\[ \sin^2(v) + \cos^2(v) = 1 \][/tex]

Given [tex]\(\cos(v) = -\frac{4}{5}\)[/tex]:

[tex]\[ \sin^2(v) + \left( -\frac{4}{5} \right)^2 = 1 \][/tex]

[tex]\[ \sin^2(v) + \frac{16}{25} = 1 \][/tex]

[tex]\[ \sin^2(v) = 1 - \frac{16}{25} \][/tex]

[tex]\[ \sin^2(v) = \frac{25}{25} - \frac{16}{25} \][/tex]

[tex]\[ \sin^2(v) = \frac{9}{25} \][/tex]

Since [tex]\(v\)[/tex] is in the third quadrant, [tex]\(\sin(v)\)[/tex] is negative:

[tex]\[ \sin(v) = -\sqrt{\frac{9}{25}} = -\frac{3}{5} \][/tex]

### Step 3: Finding [tex]\(\cos(u - v)\)[/tex]

Use the cosine angle subtraction formula:

[tex]\[ \cos(u - v) = \cos(u) \cos(v) + \sin(u) \sin(v) \][/tex]

Substitute the known values:

[tex]\[ \cos(u - v) = \left( -\frac{24}{25} \right) \left( -\frac{4}{5} \right) + \left( -\frac{7}{25} \right) \left( -\frac{3}{5} \right) \][/tex]

Perform the multiplications:

[tex]\[ \cos(u - v) = \frac{96}{125} + \frac{21}{125} \][/tex]

Add the results:

[tex]\[ \cos(u - v) = \frac{96 + 21}{125} = \frac{117}{125} \][/tex]

Hence, the exact value of [tex]\(\cos(u - v)\)[/tex] is:

[tex]\[ \boxed{\frac{117}{125}} \][/tex]