Determine the function's value when [tex]\( x = -1 \)[/tex].

[tex]\[ g(x) = x^3 + 6x^2 + 12x + 8 \][/tex]

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$g(x)$[/tex] \\
\hline
-3 & -1 \\
\hline
-2 & 0 \\
\hline
0 & 8 \\
\hline
2 & 64 \\
\hline
3 & 125 \\
\hline
\end{tabular}

A. [tex]\( g(-1) = -3 \)[/tex]

B. [tex]\( g(-1) = 0 \)[/tex]

C. [tex]\( g(-1) = 1 \)[/tex]

D. [tex]\( g(-1) = 27 \)[/tex]



Answer :

To determine the value of the function [tex]\( g(x) = x^3 + 6x^2 + 12x + 8 \)[/tex] when [tex]\( x = -1 \)[/tex]:

1. Substitute [tex]\( x = -1 \)[/tex] into the function:
[tex]\[ g(-1) = (-1)^3 + 6(-1)^2 + 12(-1) + 8 \][/tex]

2. Now, calculate each term step-by-step:
[tex]\[ (-1)^3 = -1 \][/tex]
[tex]\[ 6(-1)^2 = 6(1) = 6 \][/tex]
[tex]\[ 12(-1) = -12 \][/tex]
[tex]\[ 8 \text{ (constant term)} \][/tex]

3. Add these values together:
[tex]\[ g(-1) = -1 + 6 - 12 + 8 \][/tex]

4. Perform the addition/subtraction:
[tex]\[ g(-1) = -1 + 6 = 5 \][/tex]
[tex]\[ 5 - 12 = -7 \][/tex]
[tex]\[ -7 + 8 = 1 \][/tex]

Thus, the value of the function [tex]\( g(x) \)[/tex] when [tex]\( x = -1 \)[/tex] is:
[tex]\[ g(-1) = 1 \][/tex]

So, the correct answer is:
[tex]\[ g(-1)=1 \][/tex]