If [tex]\phi[/tex] is defined such that [tex]p \phi q = 3p - q[/tex], which of the following is equivalent to [tex]1 \phi (-2)[/tex]?

A) -7
B) 1
C) 5
D) 7



Answer :

To solve for [tex]\(1 \phi (-2)\)[/tex] using the given operator definition, follow these steps:

1. Identify the values of [tex]\(p\)[/tex] and [tex]\(q\)[/tex]. Here, [tex]\(p = 1\)[/tex] and [tex]\(q = -2\)[/tex].
2. Substitute these values into the expression [tex]\(p \phi q = 3p - q\)[/tex].

Now, apply the definition of the operator [tex]\(\phi\)[/tex]:

[tex]\[ 1 \phi (-2) = 3(1) - (-2) \][/tex]

Simplify the expression inside the parentheses:

[tex]\[ 1 \phi (-2) = 3 \times 1 + 2 \][/tex]

Continue simplifying:

[tex]\[ 1 \phi (-2) = 3 + 2 \][/tex]

Thus, we get:

[tex]\[ 1 \phi (-2) = 5 \][/tex]

Therefore, the correct answer is:

C) 5