A [tex]2 \, \text{kg}[/tex] laptop sits on the floor near a [tex]4 \, \text{kg}[/tex] jar of pennies. If the force of gravity between them is [tex]3.42 \times 10^{-10} \, \text{N}[/tex], how far apart are they?

A. [tex]1.25 \, \text{m}[/tex]
B. [tex]1.68 \, \text{m}[/tex]
C. [tex]2.12 \, \text{m}[/tex]
D. [tex]1.81 \, \text{m}[/tex]



Answer :

To find the distance between a [tex]$2 \, \text{kg}$[/tex] laptop and a [tex]$4 \, \text{kg}$[/tex] jar of pennies, given that the gravitational force between them is [tex]$3.42 \times 10^{-10} \, \text{N}$[/tex], we can use Newton's law of universal gravitation. The formula for the gravitational force [tex]\( F \)[/tex] between two masses [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] separated by a distance [tex]\( r \)[/tex] is:

[tex]\[ F = \frac{G \cdot m_1 \cdot m_2}{r^2} \][/tex]

where [tex]\( G \)[/tex] is the universal gravitational constant [tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-2} \)[/tex].

Let's isolate [tex]\( r \)[/tex] in the formula:

[tex]\[ r^2 = \frac{G \cdot m_1 \cdot m_2}{F} \][/tex]

Taking the square root of both sides will give us [tex]\( r \)[/tex]:

[tex]\[ r = \sqrt{\frac{G \cdot m_1 \cdot m_2}{F}} \][/tex]

Plugging in the given values:

- [tex]\( G = 6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-2} \)[/tex]
- [tex]\( m_1 = 2 \, \text{kg} \)[/tex]
- [tex]\( m_2 = 4 \, \text{kg} \)[/tex]
- [tex]\( F = 3.42 \times 10^{-10} \, \text{N} \)[/tex]

[tex]\[ r = \sqrt{\frac{6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-2} \times 2 \, \text{kg} \times 4 \, \text{kg}}{3.42 \times 10^{-10} \, \text{N}}} \][/tex]

Simplifying the expression under the square root:

[tex]\[ r = \sqrt{\frac{6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-2} \times 8 \, \text{kg}^2}{3.42 \times 10^{-10} \, \text{N}}} \][/tex]

[tex]\[ r = \sqrt{\frac{5.33944 \times 10^{-10} \, \text{m}^3 \, \text{s}^{-2}}{3.42 \times 10^{-10} \, \text{N}}} \][/tex]

[tex]\[ r = \sqrt{1.56122 \, \text{m}^2} \][/tex]

[tex]\[ r \approx 1.25 \, \text{m} \][/tex]

Therefore, the distance between the laptop and the jar of pennies is closest to option A.

So, the correct answer is:
A. [tex]$1.25 \, \text{m}$[/tex].

Answer:

To find the distance between a

2

kg

2kg laptop and a

4

kg

4kg jar of pennies, given that the gravitational force between them is

3.42

×

1

0

10

N

3.42×10

−10

N , we can use Newton's law of universal gravitation. The formula for the gravitational force

F between two masses

1

m

1

and

2

m

2

separated by a distance

r is:

=

1

2

2

F=

r

2

G⋅m

1

⋅m

2

where

G is the universal gravitational constant

6.67430

×

1

0

11

m

3

kg

1

s

2

6.67430×10

−11

m

3

kg

−1

s

−2

.

Let's isolate

r in the formula:

2

=

1

2

r

2

=

F

G⋅m

1

⋅m

2

Taking the square root of both sides will give us

r :

=

1

2

r=

F

G⋅m

1

⋅m

2

Plugging in the given values:

-

=

6.67430

×

1

0

11

m

3

kg

1

s

2

G=6.67430×10

−11

m

3

kg

−1

s

−2

-

1

=

2

kg

m

1

=2kg

-

2

=

4

kg

m

2

=4kg

-

=

3.42

×

1

0

10

N

F=3.42×10

−10

N

=

6.67430

×

1

0

11

m

3

kg

1

s

2

×

2

kg

×

4

kg

3.42

×

1

0

10

N

r=

3.42×10

−10

N

6.67430×10

−11

m

3

kg

−1

s

−2

×2kg×4kg

Simplifying the expression under the square root:

=

6.67430

×

1

0

11

m

3

kg

1

s

2

×

8

kg

2

3.42

×

1

0

10

N

r=

3.42×10

−10

N

6.67430×10

−11

m

3

kg

−1

s

−2

×8kg

2

=

5.33944

×

1

0

10

m

3

s

2

3.42

×

1

0

10

N

r=

3.42×10

−10

N

5.33944×10

−10

m

3

s

−2

=

1.56122

m

2

r=

1.56122m

2

1.25

m

r≈1.25m

Therefore, the distance between the laptop and the jar of pennies is closest to option A.

So, the correct answer is:

A.

1.25

m

1.25m