What is [tex][tex]$\cos 45^{\circ}$[/tex][/tex]?

A. [tex][tex]$\frac{\sqrt{3}}{2}$[/tex][/tex]
B. [tex][tex]$\frac{1}{\sqrt{3}}$[/tex][/tex]
C. 1
D. [tex][tex]$\frac{1}{\sqrt{2}}$[/tex][/tex]
E. [tex][tex]$\frac{1}{2}$[/tex][/tex]
F. [tex][tex]$\sqrt{3}$[/tex][/tex]



Answer :

To find the value of [tex]\(\cos 45^\circ\)[/tex], we can follow the principles of trigonometry and the properties of angles in a right-angled triangle.

First, let's understand that [tex]\(45^\circ\)[/tex] is a special angle in trigonometry. In the context of a right-angled triangle, an angle of [tex]\(45^\circ\)[/tex] signifies an isosceles right-angled triangle, where the two non-right angles are equal, both being [tex]\(45^\circ\)[/tex].

In such a triangle, let's denote the lengths of the legs adjacent and opposite to the [tex]\(45^\circ\)[/tex] angle as [tex]\(a\)[/tex]. According to the Pythagorean theorem:
[tex]\[ a^2 + a^2 = ( \text{hypotenuse} )^2 \][/tex]
Simplifying this, we get:
[tex]\[ 2a^2 = (\text{hypotenuse})^2 \][/tex]
[tex]\[ \text{hypotenuse} = a \sqrt{2} \][/tex]

The cosine of an angle in a right triangle is defined as the ratio of the length of the adjacent leg to the length of the hypotenuse. Therefore, for [tex]\( \cos 45^\circ \)[/tex]:
[tex]\[ \cos 45^\circ = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{a}{a\sqrt{2}} = \frac{1}{\sqrt{2}} \][/tex]

To double-check our understanding, we can convert the fraction [tex]\(\frac{1}{\sqrt{2}}\)[/tex] into its decimal form. The decimal value for this ratio is approximately:
[tex]\[ \cos 45^\circ \approx 0.707 \][/tex]

This matches the known value of [tex]\(\cos 45^\circ\)[/tex].

Given the options, the correct answer is:
[tex]\[ \cos 45^\circ = \frac{1}{\sqrt{2}} \][/tex]

So, the correct option is:
[tex]\[ D. \frac{1}{\sqrt{2}} \][/tex]