Type the correct answer in the box.

Consider functions [tex]f[/tex] and [tex]g[/tex].
[tex]\[
\begin{array}{l}
f(x)=(x+1)^3 \\
g(x)=\sqrt[3]{x}+1
\end{array}
\][/tex]

Evaluate the function composition.
[tex]\[
(f \circ g)(-64)= \square
\][/tex]



Answer :

To evaluate the function composition [tex]\((f \circ g)(-64)\)[/tex], we need to follow these steps:

1. Determine [tex]\( g(-64) \)[/tex].
2. Utilize the result from step 1 as the input for [tex]\( f(x) \)[/tex].

First, let's evaluate [tex]\( g(-64) \)[/tex]:

[tex]\[ g(x) = \sqrt[3]{x} + 1 \][/tex]

[tex]\[ g(-64) = \sqrt[3]{-64} + 1 \][/tex]

To find [tex]\(\sqrt[3]{-64}\)[/tex], we recognize that [tex]\(-64\)[/tex] can be expressed in terms of negative cubes:

[tex]\[ -64 = -4^3 \quad \Rightarrow \quad \sqrt[3]{-64} = \sqrt[3]{-4^3} = -4 \][/tex]

Substituting back into [tex]\( g(x) \)[/tex]:

[tex]\[ g(-64) = -4 + 1 = -3 \quad \text{and} \quad g(-64) \approx 3 + 3.464101615137754j \][/tex]

Next, we use the result of [tex]\( g(-64) \approx (3 + 3.464101615137754j) \)[/tex] as the input for [tex]\( f(x) \)[/tex]:

[tex]\[ f(x) = (x + 1)^3 \][/tex]

Now, calculate [tex]\( f(g(-64)) \)[/tex]:

[tex]\[ f(g(-64)) = f(3 + 3.464101615137754j) = (3 + 3.464101615137754j + 1)^3 \][/tex]

Given that the precise calculation was done, we skip to the final composition result:

[tex]\[ (f \circ g)(-64) \approx (-80 + 124.70765814495915j) \][/tex]

Thus, the function composition evaluated at [tex]\(-64\)[/tex] is:

[tex]\((f \circ g)(-64) = -80 + 124.70765814495915j\)[/tex]

So, the value is:

[tex]\[-80 + 124.70765814495915j\][/tex]