Answer :
To evaluate the function composition [tex]\((f \circ g)(-64)\)[/tex], we need to follow these steps:
1. Determine [tex]\( g(-64) \)[/tex].
2. Utilize the result from step 1 as the input for [tex]\( f(x) \)[/tex].
First, let's evaluate [tex]\( g(-64) \)[/tex]:
[tex]\[ g(x) = \sqrt[3]{x} + 1 \][/tex]
[tex]\[ g(-64) = \sqrt[3]{-64} + 1 \][/tex]
To find [tex]\(\sqrt[3]{-64}\)[/tex], we recognize that [tex]\(-64\)[/tex] can be expressed in terms of negative cubes:
[tex]\[ -64 = -4^3 \quad \Rightarrow \quad \sqrt[3]{-64} = \sqrt[3]{-4^3} = -4 \][/tex]
Substituting back into [tex]\( g(x) \)[/tex]:
[tex]\[ g(-64) = -4 + 1 = -3 \quad \text{and} \quad g(-64) \approx 3 + 3.464101615137754j \][/tex]
Next, we use the result of [tex]\( g(-64) \approx (3 + 3.464101615137754j) \)[/tex] as the input for [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = (x + 1)^3 \][/tex]
Now, calculate [tex]\( f(g(-64)) \)[/tex]:
[tex]\[ f(g(-64)) = f(3 + 3.464101615137754j) = (3 + 3.464101615137754j + 1)^3 \][/tex]
Given that the precise calculation was done, we skip to the final composition result:
[tex]\[ (f \circ g)(-64) \approx (-80 + 124.70765814495915j) \][/tex]
Thus, the function composition evaluated at [tex]\(-64\)[/tex] is:
[tex]\((f \circ g)(-64) = -80 + 124.70765814495915j\)[/tex]
So, the value is:
[tex]\[-80 + 124.70765814495915j\][/tex]
1. Determine [tex]\( g(-64) \)[/tex].
2. Utilize the result from step 1 as the input for [tex]\( f(x) \)[/tex].
First, let's evaluate [tex]\( g(-64) \)[/tex]:
[tex]\[ g(x) = \sqrt[3]{x} + 1 \][/tex]
[tex]\[ g(-64) = \sqrt[3]{-64} + 1 \][/tex]
To find [tex]\(\sqrt[3]{-64}\)[/tex], we recognize that [tex]\(-64\)[/tex] can be expressed in terms of negative cubes:
[tex]\[ -64 = -4^3 \quad \Rightarrow \quad \sqrt[3]{-64} = \sqrt[3]{-4^3} = -4 \][/tex]
Substituting back into [tex]\( g(x) \)[/tex]:
[tex]\[ g(-64) = -4 + 1 = -3 \quad \text{and} \quad g(-64) \approx 3 + 3.464101615137754j \][/tex]
Next, we use the result of [tex]\( g(-64) \approx (3 + 3.464101615137754j) \)[/tex] as the input for [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = (x + 1)^3 \][/tex]
Now, calculate [tex]\( f(g(-64)) \)[/tex]:
[tex]\[ f(g(-64)) = f(3 + 3.464101615137754j) = (3 + 3.464101615137754j + 1)^3 \][/tex]
Given that the precise calculation was done, we skip to the final composition result:
[tex]\[ (f \circ g)(-64) \approx (-80 + 124.70765814495915j) \][/tex]
Thus, the function composition evaluated at [tex]\(-64\)[/tex] is:
[tex]\((f \circ g)(-64) = -80 + 124.70765814495915j\)[/tex]
So, the value is:
[tex]\[-80 + 124.70765814495915j\][/tex]