If [tex][tex]$h(x)=6-x$[/tex][/tex], what is the value of [tex][tex]$(h \circ h)(10)$[/tex][/tex]?

A. [tex]\(-4\)[/tex]
B. [tex]\(-2\)[/tex]
C. 10
D. 16



Answer :

To determine the value of [tex]\((h \circ h)(10)\)[/tex], let's proceed step by step.

First, we need to understand the composition of the function [tex]\(h\)[/tex]. The composition [tex]\((h \circ h)(x)\)[/tex] means we apply the function [tex]\(h\)[/tex] twice. In other words:
[tex]\[ (h \circ h)(x) = h(h(x)) \][/tex]

Given the function [tex]\(h(x)\)[/tex]:
[tex]\[ h(x) = 6 - x \][/tex]

1. First Application of [tex]\(h\)[/tex]:

We apply [tex]\(h\)[/tex] to [tex]\(10\)[/tex]:
[tex]\[ h(10) = 6 - 10 = -4 \][/tex]

2. Second Application of [tex]\(h\)[/tex]:

Now, we need to apply [tex]\(h\)[/tex] again to the result we obtained, which is [tex]\(-4\)[/tex]:
[tex]\[ h(-4) = 6 - (-4) = 6 + 4 = 10 \][/tex]

Therefore, the value of [tex]\((h \circ h)(10)\)[/tex] is [tex]\(10\)[/tex].

So, the correct answer is:
[tex]\[ \boxed{10} \][/tex]