The function [tex][tex]$h(x)$[/tex][/tex] is given below:
[tex]\[ h(x) = \{(3,-5), (5,-7), (6,-9), (10,-12), (12,-16)\} \][/tex]

Which of the following gives [tex][tex]$h^{-1}(x)$[/tex][/tex]?
A. [tex]\{(3,5), (5,7), (6,9), (10,12), (12,16)\}[/tex]
B. [tex]\{(-5,3), (-7,5), (-9,6), (-12,10), (-16,12)\}[/tex]
C. [tex]\{(3,-5), (5,-7), (6,-9), (10,-12), (12,-16)\}[/tex]
D. [tex]\{(5,3), (7,5), (9,6), (12,10), (16,12)\}[/tex]



Answer :

To find the inverse function [tex]\( h^{-1}(x) \)[/tex] from a given set of ordered pairs [tex]\( h(x) \)[/tex], we need to interchange the elements of each pair. Specifically, if [tex]\( h(x) \)[/tex] contains a pair [tex]\((a, b)\)[/tex], then [tex]\( h^{-1}(x) \)[/tex] will contain the pair [tex]\((b, a)\)[/tex].

Given the function:
[tex]\[ h(x) = \{(3, -5), (5, -7), (6, -9), (10, -12), (12, -16)\} \][/tex]

Step-by-step interchanging the pairs:

1. For the pair [tex]\((3, -5)\)[/tex], the inverse pair is [tex]\((-5, 3)\)[/tex].
2. For the pair [tex]\((5, -7)\)[/tex], the inverse pair is [tex]\((-7, 5)\)[/tex].
3. For the pair [tex]\((6, -9)\)[/tex], the inverse pair is [tex]\((-9, 6)\)[/tex].
4. For the pair [tex]\((10, -12)\)[/tex], the inverse pair is [tex]\((-12, 10)\)[/tex].
5. For the pair [tex]\((12, -16)\)[/tex], the inverse pair is [tex]\((-16, 12)\)[/tex].

Therefore, the set of pairs for [tex]\( h^{-1}(x) \)[/tex] is:
[tex]\[ \{(-5, 3), (-7, 5), (-9, 6), (-12, 10), (-16, 12)\} \][/tex]

Among the provided options, the set that matches our result is:
[tex]\[ \{(-5, 3), (-7, 5), (-9, 6), (-12, 10), (-16, 12)\} \][/tex]

Thus, the correct answer is:
[tex]\[ \{(-5, 3), (-7, 5), (-9, 6), (-12, 10), (-16, 12)\} \][/tex]