Answer :
To find [tex]\( g(-4) \)[/tex] given the function [tex]\( g(x) = -5x + 2 \)[/tex], let's follow these steps:
1. Identify the value of [tex]\( x \)[/tex]:
- We need to evaluate the function at [tex]\( x = -4 \)[/tex].
2. Substitute [tex]\( x \)[/tex] with [tex]\(-4\)[/tex] in the function:
- The function is [tex]\( g(x) = -5x + 2 \)[/tex].
- Substituting [tex]\(-4\)[/tex] for [tex]\( x \)[/tex] gives us:
[tex]\[ g(-4) = -5(-4) + 2 \][/tex]
3. Perform the multiplication:
- Calculate [tex]\( -5 \cdot (-4) \)[/tex]:
[tex]\[ -5 \cdot (-4) = 20 \][/tex]
4. Add the constant term:
- Now, add 2 to the result of the multiplication:
[tex]\[ 20 + 2 = 22 \][/tex]
So, the value of [tex]\( g(-4) \)[/tex] is [tex]\( 22 \)[/tex].
1. Identify the value of [tex]\( x \)[/tex]:
- We need to evaluate the function at [tex]\( x = -4 \)[/tex].
2. Substitute [tex]\( x \)[/tex] with [tex]\(-4\)[/tex] in the function:
- The function is [tex]\( g(x) = -5x + 2 \)[/tex].
- Substituting [tex]\(-4\)[/tex] for [tex]\( x \)[/tex] gives us:
[tex]\[ g(-4) = -5(-4) + 2 \][/tex]
3. Perform the multiplication:
- Calculate [tex]\( -5 \cdot (-4) \)[/tex]:
[tex]\[ -5 \cdot (-4) = 20 \][/tex]
4. Add the constant term:
- Now, add 2 to the result of the multiplication:
[tex]\[ 20 + 2 = 22 \][/tex]
So, the value of [tex]\( g(-4) \)[/tex] is [tex]\( 22 \)[/tex].