Consider the following equation:
[tex]\[
f(x) = \frac{x^2 + 4}{4x^2 - 4x - 8}
\][/tex]

Name the vertical asymptote(s).

A. [tex]\( x = -1 \)[/tex] and [tex]\( x = 2 \)[/tex]

B. [tex]\( y = -1 \)[/tex] and [tex]\( y = 2 \)[/tex]

C. [tex]\( x = \frac{1}{4} \)[/tex]

D. [tex]\( y = \frac{1}{4} \)[/tex]

E. [tex]\( x = 0 \)[/tex]

F. [tex]\( y = 0 \)[/tex]



Answer :

To determine the vertical asymptotes of the function

[tex]\[ f(x)=\frac{x^2+4}{4 x^2-4 x-8}, \][/tex]

we need to identify the values of [tex]\( x \)[/tex] that make the denominator equal to zero since these will cause the function to be undefined.

First, we start with the denominator:

[tex]\[ 4 x^2 - 4 x - 8 = 0. \][/tex]

This is a quadratic equation, and we can solve for [tex]\( x \)[/tex] using the quadratic formula:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \][/tex]

where [tex]\( a = 4 \)[/tex], [tex]\( b = -4 \)[/tex], and [tex]\( c = -8 \)[/tex].

First, calculate the discriminant:

[tex]\[ \text{Discriminant} = b^2 - 4ac = (-4)^2 - 4 \cdot 4 \cdot (-8) = 16 + 128 = 144. \][/tex]

Next, take the square root of the discriminant:

[tex]\[ \sqrt{\text{Discriminant}} = \sqrt{144} = 12. \][/tex]

Now, apply the quadratic formula:

[tex]\[ x = \frac{-(-4) \pm 12}{2 \cdot 4} = \frac{4 \pm 12}{8}. \][/tex]

This gives us two solutions:

[tex]\[ x_1 = \frac{4 + 12}{8} = \frac{16}{8} = 2, \][/tex]

[tex]\[ x_2 = \frac{4 - 12}{8} = \frac{-8}{8} = -1. \][/tex]

Hence, the vertical asymptotes of the function [tex]\( f(x) \)[/tex] are [tex]\( x = 2 \)[/tex] and [tex]\( x = -1 \)[/tex].

Thus, the correct answer is:

[tex]\[ \boxed{x=-1 \text{ and } x=2} \][/tex]