Answer :

To solve the inequality [tex]\( 9x - 4x + 8 < 3(x + 4) \)[/tex], we will work through it step-by-step:

1. Simplify both sides of the inequality:

Combine like terms on the left side of the inequality:
[tex]\[ 9x - 4x + 8 < 3(x + 4) \][/tex]
This simplifies to:
[tex]\[ 5x + 8 < 3(x + 4) \][/tex]

2. Distribute on the right side:

Distribute the 3 on the right side:
[tex]\[ 5x + 8 < 3x + 12 \][/tex]

3. Isolate the variable term on one side:

Subtract [tex]\( 3x \)[/tex] from both sides to get the variable [tex]\( x \)[/tex] on one side:
[tex]\[ 5x + 8 - 3x < 3x + 12 - 3x \][/tex]
Simplify:
[tex]\[ 2x + 8 < 12 \][/tex]

4. Isolate the variable further:

Subtract 8 from both sides to move the constant term to the right:
[tex]\[ 2x + 8 - 8 < 12 - 8 \][/tex]
Simplify:
[tex]\[ 2x < 4 \][/tex]

5. Solve for [tex]\( x \)[/tex]:

Divide both sides by 2 to solve for [tex]\( x \)[/tex]:
[tex]\[ \frac{2x}{2} < \frac{4}{2} \][/tex]
Simplify:
[tex]\[ x < 2 \][/tex]

The solution to the inequality [tex]\( 9x - 4x + 8 < 3(x + 4) \)[/tex] is [tex]\( x < 2 \)[/tex].

6. Write the solution set in interval notation:

In interval notation, the solution set is:
[tex]\[ (-\infty, 2) \][/tex]

So, the complete solution in interval notation is [tex]\( (-\infty, 2) \)[/tex].