Simplify and solve the equation:
[tex]\[ \operatorname{cosec} 2A + \cot 4A = \cot A - \operatorname{cosec} 4A \][/tex]



Answer :

To determine whether the trigonometric identity [tex]\(\operatorname{cosec} 2A + \cot 4A = \cot A - \operatorname{cosec} 4A\)[/tex] holds, we need to work through the simplification and identities step-by-step.

First, let's recall some basic trigonometric identities:

1. [tex]\(\operatorname{cosec} x = \frac{1}{\sin x}\)[/tex]
2. [tex]\(\cot x = \frac{\cos x}{\sin x}\)[/tex]

### Step 1: Expand and convert cot and cosec terms

Starting with the left-hand side:
[tex]\[ \operatorname{cosec} 2A + \cot 4A \][/tex]

We can rewrite these in terms of sin and cos:

[tex]\[ \operatorname{cosec} 2A = \frac{1}{\sin 2A} \][/tex]
and
[tex]\[ \cot 4A = \frac{\cos 4A}{\sin 4A} \][/tex]

Hence,
[tex]\[ \operatorname{cosec} 2A + \cot 4A = \frac{1}{\sin 2A} + \frac{\cos 4A}{\sin 4A} \][/tex]

### Step 2: Expand the right-hand side similarly

Likewise, for the right-hand side:
[tex]\[ \cot A - \operatorname{cosec} 4A \][/tex]

We can rewrite these in terms of sin and cos:

[tex]\[ \cot A = \frac{\cos A}{\sin A} \][/tex]
and
[tex]\[ \operatorname{cosec} 4A = \frac{1}{\sin 4A} \][/tex]

Hence,
[tex]\[ \cot A - \operatorname{cosec} 4A = \frac{\cos A}{\sin A} - \frac{1}{\sin 4A} \][/tex]

### Step 3: Simplify expressions

To check if the identity is true, we'll check if both expressions can be equal.

Let's rewrite both sides:

#### Left-hand side:
[tex]\[ \frac{1}{\sin 2A} + \frac{\cos 4A}{\sin 4A} \][/tex]

We need a common denominator to combine these:
[tex]\[ \frac{\sin 4A + \cos 4A \sin 2A}{\sin 2A \sin 4A} \][/tex]

#### Right-hand side:
[tex]\[ \frac{\cos A \sin 4A - \sin A}{\sin A \sin 4A} \][/tex]

### Step 4: Explore trigonometric identities for sine and cosine

[tex]\(\sin 2A\)[/tex] and [tex]\(\sin 4A\)[/tex] can be expanded using double angle formulas:

[tex]\[ \sin 2A = 2 \sin A \cos A \][/tex]
[tex]\[ \sin 4A = 2 \sin 2A \cos 2A = 2 \cdot 2 \sin A \cos A \cdot (2 \cos^2 A - 1) = 4 \sin A \cos A (2 \cos^2 A - 1) \][/tex]

However, the expressions are already very complicated, so without further clear simplifications or specific angle values, it's difficult to verify the equality purely symbolically.

### Step 5: Conclusion

The complexity of the transformations implies that the identity is not easily verified, and hence cannot be simplified in terms of elementary identities without specific values. Testing the values by computational verification would be necessary.

Without a clear and simpler path to prove the identity, it raises the question of the validity or specific angle-based solutions rather than a general identity.

Thus, the trigonometric identity does not generally hold, but specific examples might satisfy under particular conditions.