Sure, let's solve for [tex]\( x \)[/tex] in the equation:
[tex]\[ y = (5 + x) m \][/tex]
Here are the steps to isolate [tex]\( x \)[/tex]:
1. Divide both sides of the equation by [tex]\( m \)[/tex] to isolate the term with [tex]\( x \)[/tex] on one side:
[tex]\[ \frac{y}{m} = 5 + x \][/tex]
2. Subtract 5 from both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{y}{m} - 5 \][/tex]
So, the solution for [tex]\( x \)[/tex] is:
[tex]\[ x = \frac{y}{m} - 5 \][/tex]
This isolates [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex] and [tex]\( m \)[/tex].