Find the angular speed [tex]\(\omega\)[/tex] (in radians per second) associated with rotating a central angle [tex]\(\theta = 27 \pi\)[/tex] in time [tex]\(t = 12\)[/tex] seconds.

NOTE: Enter the exact, fully simplified answer.
[tex]\[
\omega = \square \ \text{rad/sec}
\][/tex]



Answer :

To find the angular speed [tex]\(\omega\)[/tex] (in radians per second) of a rotating object, you can use the formula for angular speed:

[tex]\[ \omega = \frac{\theta}{t} \][/tex]

where:
- [tex]\(\theta\)[/tex] is the angular displacement in radians,
- [tex]\(t\)[/tex] is the time in seconds.

In this problem, we are given:
- [tex]\(\theta = 27 \pi\)[/tex] radians,
- [tex]\(t = 12\)[/tex] seconds.

Substitute the given values into the formula:

[tex]\[ \omega = \frac{27 \pi}{12} \][/tex]

Now, simplify the fraction:

[tex]\[ \omega = \frac{27 \pi}{12} = \frac{27}{12} \pi = \frac{27 \div 3}{12 \div 3} \pi = \frac{9}{4} \pi \][/tex]

Thus, the angular speed [tex]\(\omega\)[/tex] is:

[tex]\[ \omega = \frac{9 \pi}{4} \text{ rad/sec} \][/tex]

So the exact, fully simplified angular speed is:

[tex]\[ \boxed{\frac{9 \pi}{4} \text{ rad/sec}} \][/tex]