Which of the following is the result of using the remainder theorem to find [tex][tex]$F(-1)$[/tex][/tex] for the polynomial function [tex][tex]$F(x)=-x^3+6x^2-4x+11$[/tex][/tex]?

A. 22
B. -21
C. -20
D. 20



Answer :

To use the remainder theorem to find [tex]\( F(-1) \)[/tex] for the polynomial function [tex]\( F(x) = -x^3 + 6x^2 - 4x + 11 \)[/tex]:

1. Substitute [tex]\( x = -1 \)[/tex] into the polynomial:

Given the function [tex]\( F(x) = -x^3 + 6x^2 - 4x + 11 \)[/tex], we need to evaluate [tex]\( F(-1) \)[/tex].

2. Evaluate each term:

- For the term [tex]\( -x^3 \)[/tex]:
[tex]\[ -(-1)^3 = -(-1) = 1 \][/tex]

- For the term [tex]\( 6x^2 \)[/tex]:
[tex]\[ 6(-1)^2 = 6(1) = 6 \][/tex]

- For the term [tex]\( -4x \)[/tex]:
[tex]\[ -4(-1) = 4 \][/tex]

- For the constant term [tex]\( +11 \)[/tex]:
[tex]\[ 11 \][/tex]

3. Add the results of each term:

[tex]\[ F(-1) = 1 + 6 + 4 + 11 \][/tex]

4. Combine the results:

[tex]\[ F(-1) = 22 \][/tex]

Hence, the result of using the remainder theorem to find [tex]\( F(-1) \)[/tex] for the polynomial function [tex]\( F(x) = -x^3 + 6x^2 - 4x + 11 \)[/tex] is [tex]\(\boxed{22}\)[/tex].