A car has a mass of [tex][tex]$1,200 \, \text{kg}$[/tex][/tex]. What is its acceleration when the engine exerts a force of [tex][tex]$600 \, \text{N}$[/tex][/tex]? (Formula: [tex]F = ma[/tex])

A. [tex]0.5 \, \text{m/s}^2[/tex]
B. [tex]2 \, \text{m/s}^2[/tex]
C. [tex]600 \, \text{m/s}^2[/tex]
D. [tex]1,800 \, \text{m/s}^2[/tex]



Answer :

To determine the car's acceleration, we can use Newton's second law of motion, which is given by the formula:

[tex]\[ F = ma \][/tex]

Here, [tex]\( F \)[/tex] is the force applied, [tex]\( m \)[/tex] is the mass of the object, and [tex]\( a \)[/tex] is the acceleration.

We are given:
- The mass of the car ([tex]\( m \)[/tex]) is 1,200 kg.
- The force exerted by the engine ([tex]\( F \)[/tex]) is 600 N.

We need to find the acceleration ([tex]\( a \)[/tex]). We can rearrange the formula to solve for [tex]\( a \)[/tex]:

[tex]\[ a = \frac{F}{m} \][/tex]

Substituting the given values into the equation:

[tex]\[ a = \frac{600 \text{ N}}{1200 \text{ kg}} \][/tex]

Upon performing the division:

[tex]\[ a = 0.5 \text{ m/s}^2 \][/tex]

Therefore, the acceleration of the car is:

[tex]\[ 0.5 \text{ m/s}^2 \][/tex]

Among the given options, the correct answer is:

[tex]\[ 0.5 \text{ m/s}^2 \][/tex]