Answer :

To find the value of the function [tex]\( f(x) = 2x^2 + 5\sqrt{x-2} \)[/tex] at [tex]\( x = 6 \)[/tex], we need to substitute [tex]\( x \)[/tex] with 6 in the function and follow these steps:

1. Substitute [tex]\( x = 6 \)[/tex] into the function:
[tex]\[ f(6) = 2(6)^2 + 5\sqrt{6-2} \][/tex]

2. Calculate [tex]\( 6^2 \)[/tex]:
[tex]\[ 6^2 = 36 \][/tex]

3. Multiply by 2:
[tex]\[ 2 \cdot 36 = 72 \][/tex]

4. Calculate the value inside the square root:
[tex]\[ 6 - 2 = 4 \][/tex]

5. Take the square root of 4:
[tex]\[ \sqrt{4} = 2 \][/tex]

6. Multiply by 5:
[tex]\[ 5 \cdot 2 = 10 \][/tex]

7. Add the results from step 3 and step 6:
[tex]\[ 72 + 10 = 82 \][/tex]

Therefore,
[tex]\[ f(6) = 82 \][/tex]