6. Solve for [tex]\( x \)[/tex]:

[tex]\[ -3|x-3|=-6 \][/tex]

A. [tex]\( x=1, x=-1 \)[/tex]
B. [tex]\( x=1, x=5 \)[/tex]
C. [tex]\( x=0, x=5 \)[/tex]
D. No solutions



Answer :

To solve the equation [tex]\( -3|x - 3| = -6 \)[/tex], let's go through the steps in a detailed manner:

1. First, isolate the absolute value term. We can do this by dividing both sides of the equation by [tex]\(-3\)[/tex]:
[tex]\[ -3|x - 3| = -6 \][/tex]
[tex]\[ |x - 3| = \frac{-6}{-3} \][/tex]
[tex]\[ |x - 3| = 2 \][/tex]

2. The equation [tex]\( |x - 3| = 2 \)[/tex] means that the expression inside the absolute value can be either 2 or -2. Therefore, we set up two separate equations to solve for [tex]\( x \)[/tex]:
[tex]\[ x - 3 = 2 \quad \text{or} \quad x - 3 = -2 \][/tex]

3. Solving each equation separately:

- For [tex]\( x - 3 = 2 \)[/tex]:
[tex]\[ x - 3 = 2 \][/tex]
[tex]\[ x = 2 + 3 \][/tex]
[tex]\[ x = 5 \][/tex]

- For [tex]\( x - 3 = -2 \)[/tex]:
[tex]\[ x - 3 = -2 \][/tex]
[tex]\[ x = -2 + 3 \][/tex]
[tex]\[ x = 1 \][/tex]

4. Therefore, the solutions to the equation [tex]\( -3|x - 3| = -6 \)[/tex] are [tex]\( x = 1 \)[/tex] and [tex]\( x = 5 \)[/tex].

So, the correct answer is:

[tex]\[ \boxed{x = 1, x = 5} \][/tex]