Answer :

Sure! Let's simplify the expression [tex]\( 2(3x - 1) - 3(x + 2) \)[/tex] step by step.

1. Distribute the constants inside the parentheses:
[tex]\[ 2(3x - 1) \implies 2 \cdot 3x + 2 \cdot (-1) = 6x - 2 \][/tex]
[tex]\[ -3(x + 2) \implies -3 \cdot x + (-3) \cdot 2 = -3x - 6 \][/tex]

2. Rewrite the expression with the distributed terms:
[tex]\[ 2(3x - 1) - 3(x + 2) = (6x - 2) - (3x + 6) \][/tex]

3. Combine the like terms:
[tex]\[ 6x - 2 - 3x - 6 \][/tex]
[tex]\[ (6x - 3x) + (-2 - 6) \][/tex]
[tex]\[ 3x - 8 \][/tex]

So, the simplified form of the expression [tex]\( 2(3x - 1) - 3(x + 2) \)[/tex] is:
[tex]\[ \boxed{3x - 8} \][/tex]

That's the final simplified expression.