Sure! Let's simplify the expression [tex]\( 2(3x - 1) - 3(x + 2) \)[/tex] step by step.
1. Distribute the constants inside the parentheses:
[tex]\[
2(3x - 1) \implies 2 \cdot 3x + 2 \cdot (-1) = 6x - 2
\][/tex]
[tex]\[
-3(x + 2) \implies -3 \cdot x + (-3) \cdot 2 = -3x - 6
\][/tex]
2. Rewrite the expression with the distributed terms:
[tex]\[
2(3x - 1) - 3(x + 2) = (6x - 2) - (3x + 6)
\][/tex]
3. Combine the like terms:
[tex]\[
6x - 2 - 3x - 6
\][/tex]
[tex]\[
(6x - 3x) + (-2 - 6)
\][/tex]
[tex]\[
3x - 8
\][/tex]
So, the simplified form of the expression [tex]\( 2(3x - 1) - 3(x + 2) \)[/tex] is:
[tex]\[
\boxed{3x - 8}
\][/tex]
That's the final simplified expression.