Answer :
To solve the given questions, let's analyze the given reaction and data step-by-step:
1. Determining the type of reaction:
The given reaction is:
[tex]\[ 2 H_2O(l) \rightarrow 2 H_2(g) + O_2(g) \quad \Delta H = 572 \, \text{kJ} \][/tex]
The change in enthalpy [tex]\(\Delta H\)[/tex] is positive, indicating that the reaction absorbs heat from the surroundings.
Therefore, the reaction is endothermic.
Answer: This reaction is endothermic.
2. Heat absorption or release:
Now, we need to determine if heat will be absorbed or released when 95.2 grams of [tex]\( H_2O \)[/tex] react. Since the reaction is endothermic, it will absorb heat.
Answer: Yes, absorbed.
3. Calculating the amount of heat absorbed:
To calculate how much heat will be absorbed when 95.2 grams of water react, follow these steps:
- Calculate the molar mass of [tex]\( H_2O \)[/tex]:
[tex]\[ \text{Molar mass of } H_2O = 2 \times 1.01\, \text{g/mol} + 16.00\, \text{g/mol} = 18.02\, \text{g/mol} \][/tex]
- Calculate the number of moles of [tex]\( H_2O \)[/tex]:
[tex]\[ \text{moles of } H_2O = \frac{95.2\, \text{g}}{18.02\, \text{g/mol}} \approx 5.283\, \text{moles} \][/tex]
- Determine the heat absorbed:
The given [tex]\(\Delta H\)[/tex] value of 572 kJ corresponds to the reaction of 2 moles of [tex]\( H_2O \)[/tex].
Therefore, the heat absorbed per mole of [tex]\( H_2O \)[/tex] is:
[tex]\[ \frac{572\, \text{kJ}}{2} = 286\, \text{kJ/mol} \][/tex]
For 5.283 moles of [tex]\( H_2O \)[/tex]:
[tex]\[ \text{Heat absorbed} = 286\, \text{kJ/mol} \times 5.283\, \text{moles} \approx 1510.943\, \text{kJ} \][/tex]
Answer: The amount of heat absorbed is 1510.943 kJ.
In summary:
[tex]\[ \boxed{1510.943 \, \text{kJ}} \][/tex]
1. Determining the type of reaction:
The given reaction is:
[tex]\[ 2 H_2O(l) \rightarrow 2 H_2(g) + O_2(g) \quad \Delta H = 572 \, \text{kJ} \][/tex]
The change in enthalpy [tex]\(\Delta H\)[/tex] is positive, indicating that the reaction absorbs heat from the surroundings.
Therefore, the reaction is endothermic.
Answer: This reaction is endothermic.
2. Heat absorption or release:
Now, we need to determine if heat will be absorbed or released when 95.2 grams of [tex]\( H_2O \)[/tex] react. Since the reaction is endothermic, it will absorb heat.
Answer: Yes, absorbed.
3. Calculating the amount of heat absorbed:
To calculate how much heat will be absorbed when 95.2 grams of water react, follow these steps:
- Calculate the molar mass of [tex]\( H_2O \)[/tex]:
[tex]\[ \text{Molar mass of } H_2O = 2 \times 1.01\, \text{g/mol} + 16.00\, \text{g/mol} = 18.02\, \text{g/mol} \][/tex]
- Calculate the number of moles of [tex]\( H_2O \)[/tex]:
[tex]\[ \text{moles of } H_2O = \frac{95.2\, \text{g}}{18.02\, \text{g/mol}} \approx 5.283\, \text{moles} \][/tex]
- Determine the heat absorbed:
The given [tex]\(\Delta H\)[/tex] value of 572 kJ corresponds to the reaction of 2 moles of [tex]\( H_2O \)[/tex].
Therefore, the heat absorbed per mole of [tex]\( H_2O \)[/tex] is:
[tex]\[ \frac{572\, \text{kJ}}{2} = 286\, \text{kJ/mol} \][/tex]
For 5.283 moles of [tex]\( H_2O \)[/tex]:
[tex]\[ \text{Heat absorbed} = 286\, \text{kJ/mol} \times 5.283\, \text{moles} \approx 1510.943\, \text{kJ} \][/tex]
Answer: The amount of heat absorbed is 1510.943 kJ.
In summary:
[tex]\[ \boxed{1510.943 \, \text{kJ}} \][/tex]