6. [tex]\( B A=\sqrt{1+d^2} \)[/tex]
[tex]\( B C=\sqrt{e^2+1} \)[/tex]
Application of the distance formula:
[tex]\( C A=\sqrt{\left(d-e\right)^2}=d-e \)[/tex]

\begin{tabular}{|c|c|}
\hline
7. [tex]\( \left(\sqrt{1+d^2}\right)^2+\left(\sqrt{e^2+1}\right)^2= \)[/tex] ? & Pythagorean theorem \\
\hline
\begin{tabular}{l}
\begin{aligned}
\left(1+d^2\right)+\left(e^2+1\right) & =d^2-2 d e+e^2 \\
2+d^2+e^2 & =d^2-2 d e+e^2 \\
2 & =-2 d e \\
-1 & =d e
\end{aligned}
\end{tabular}
& Simplify \\
\hline
9. [tex]\( -1=m_{ AB } m_{ BC } \)[/tex] & Substitution property of equality \\
\hline
\end{tabular}

Which expression is missing from step 7?
A. [tex]\(-2 d e\)[/tex]
B. [tex]\((A+B)^2\)[/tex]
C. [tex]\(A^2+B^2\)[/tex]
D. [tex]\((d-e)^2\)[/tex]



Answer :

Let's delve into finding the missing expression in step 7 using clear math steps.

Given:
[tex]\[ BA = \sqrt{1 + d^2} \][/tex]
[tex]\[ BC = \sqrt{e^2 + 1} \][/tex]
We're applying the distance formula:
[tex]\[ CA = \sqrt{(d - e)^2} = d - e \][/tex]
(Note: There seems to be a typo here, as [tex]\(\sqrt{(d - e)^2}\)[/tex] simplifies to [tex]\(|d - e|\)[/tex]. However, this can be overlooked since the primary focus is on the provided expressions.)

We need to simplify:
[tex]\[ \left(\sqrt{1 + d^2}\right)^2 + \left(\sqrt{e^2 + 1}\right)^2 \][/tex]

Step-by-step:

1. Square both expressions:

[tex]\[ (\sqrt{1 + d^2})^2 = 1 + d^2 \][/tex]
[tex]\[ (\sqrt{e^2 + 1})^2 = e^2 + 1 \][/tex]

2. Add the squared results:

[tex]\[ (1 + d^2) + (e^2 + 1) \][/tex]

This simplifies to:

[tex]\[ 1 + d^2 + e^2 + 1 = d^2 + e^2 + 2 \][/tex]

Looking at the subsequent lines:
[tex]\[ 2 + d^2 + e^2 = d^2 - 2de + e^2 \][/tex]

Let's simplify the right-hand side of the equation using a known algebraic identity. Notice:
[tex]\[ d^2 - 2de + e^2 \][/tex]

This represents the expansion of:
[tex]\[ (d - e)^2 \][/tex]

So, comparing the left-hand side and right-hand side of the equation:
[tex]\[ d^2 + e^2 + 2 \text{ (From: } (\sqrt{1+d^2})^2+(\sqrt{e^2+1})^2) = d^2 - 2 d e + e^2 \][/tex]

To find the missing term that equates both sides, we examine:
[tex]\[ 2 = -2de \][/tex]

Thus,
[tex]\[ \boxed{-2 d e} \][/tex]

Therefore, the missing expression in step 7 is:

A. [tex]\(-2 d e\)[/tex]

This ensures the equation balance, verifying that option A is the correct missing expression.