Answer :
To calculate the monthly deviation from the average sales for each month in the six-month period, you need to subtract the average value from the actual sales value for that month. Here's how you can calculate the deviations step-by-step:
1. Deviation for August:
- Sales in August: \[tex]$1,700 - Average: \$[/tex]1,412.50
- Deviation: \[tex]$1,700 - \$[/tex]1,412.50 = \[tex]$287.50 2. Deviation for September: - Sales in September: \$[/tex]1,125
- Average: \[tex]$1,412.50 - Deviation: \$[/tex]1,125 - \[tex]$1,412.50 = \$[/tex]-287.50
3. Deviation for October:
- Sales in October: \[tex]$1,850 - Average: \$[/tex]1,412.50
- Deviation: \[tex]$1,850 - \$[/tex]1,412.50 = \[tex]$437.50 4. Deviation for November: - Sales in November: \$[/tex]1,500
- Average: \[tex]$1,412.50 - Deviation: \$[/tex]1,500 - \[tex]$1,412.50 = \$[/tex]87.50
5. Deviation for December:
- Sales in December: \[tex]$1,050 - Average: \$[/tex]1,412.50
- Deviation: \[tex]$1,050 - \$[/tex]1,412.50 = \[tex]$-362.50 Here is the completed table with all the deviations filled in: \[ \begin{array}{|l|l|l|l|} \hline \text{Month} & \text{Sales} & \text{Average} & \text{Deviation} \\ \hline \text{July} & \$[/tex]1,250 & \[tex]$1,412.50 & -162.50 \\ \hline \text{Aug.} & \$[/tex]1,700 & \[tex]$1,412.50 & 287.50 \\ \hline \text{Sept.} & \$[/tex]1,125 & \[tex]$1,412.50 & -287.50 \\ \hline \text{C.t.} & \$[/tex]1,850 & \[tex]$1,412.50 & 437.50 \\ \hline \text{Nov.} & \$[/tex]1,500 & \[tex]$1,412.50 & 87.50 \\ \hline \text{Dec.} & \$[/tex]1,050 & \$1,412.50 & -362.50 \\
\hline
\end{array}
\]
1. Deviation for August:
- Sales in August: \[tex]$1,700 - Average: \$[/tex]1,412.50
- Deviation: \[tex]$1,700 - \$[/tex]1,412.50 = \[tex]$287.50 2. Deviation for September: - Sales in September: \$[/tex]1,125
- Average: \[tex]$1,412.50 - Deviation: \$[/tex]1,125 - \[tex]$1,412.50 = \$[/tex]-287.50
3. Deviation for October:
- Sales in October: \[tex]$1,850 - Average: \$[/tex]1,412.50
- Deviation: \[tex]$1,850 - \$[/tex]1,412.50 = \[tex]$437.50 4. Deviation for November: - Sales in November: \$[/tex]1,500
- Average: \[tex]$1,412.50 - Deviation: \$[/tex]1,500 - \[tex]$1,412.50 = \$[/tex]87.50
5. Deviation for December:
- Sales in December: \[tex]$1,050 - Average: \$[/tex]1,412.50
- Deviation: \[tex]$1,050 - \$[/tex]1,412.50 = \[tex]$-362.50 Here is the completed table with all the deviations filled in: \[ \begin{array}{|l|l|l|l|} \hline \text{Month} & \text{Sales} & \text{Average} & \text{Deviation} \\ \hline \text{July} & \$[/tex]1,250 & \[tex]$1,412.50 & -162.50 \\ \hline \text{Aug.} & \$[/tex]1,700 & \[tex]$1,412.50 & 287.50 \\ \hline \text{Sept.} & \$[/tex]1,125 & \[tex]$1,412.50 & -287.50 \\ \hline \text{C.t.} & \$[/tex]1,850 & \[tex]$1,412.50 & 437.50 \\ \hline \text{Nov.} & \$[/tex]1,500 & \[tex]$1,412.50 & 87.50 \\ \hline \text{Dec.} & \$[/tex]1,050 & \$1,412.50 & -362.50 \\
\hline
\end{array}
\]