If [tex]PR = 4x - 2[/tex] and [tex]RS = 3x - 5[/tex], which expression represents [tex]PS[/tex]?

A. [tex]x - 7[/tex]
B. [tex]x - 3[/tex]
C. [tex]7x - 7[/tex]
D. [tex]7x + 3[/tex]



Answer :

To find the expression representing [tex]\( PS \)[/tex], we need to add the expressions for [tex]\( PR \)[/tex] and [tex]\( RS \)[/tex]:

Given:
[tex]\[ PR = 4x - 2 \][/tex]
[tex]\[ RS = 3x - 5 \][/tex]

To find [tex]\( PS \)[/tex]:
[tex]\[ PS = PR + RS \][/tex]

Substitute the given expressions for [tex]\( PR \)[/tex] and [tex]\( RS \)[/tex]:
[tex]\[ PS = (4x - 2) + (3x - 5) \][/tex]

Now, combine like terms:
[tex]\[ PS = 4x + 3x - 2 - 5 \][/tex]

First, add the [tex]\( x \)[/tex]-terms:
[tex]\[ PS = 7x - 2 - 5 \][/tex]

Then, combine the constants:
[tex]\[ PS = 7x - 7 \][/tex]

So, the expression that represents [tex]\( PS \)[/tex] is:
[tex]\[ 7x - 7 \][/tex]

Therefore, the correct answer is:
[tex]\[ 7x - 7 \][/tex]