Answer :
To determine the force needed to accelerate a truck with a given mass, we use Newton's Second Law of Motion. This law states that the force [tex]\( F \)[/tex] acting on an object is equal to the mass [tex]\( m \)[/tex] of the object multiplied by the acceleration [tex]\( a \)[/tex] of the object. The formula is given by:
[tex]\[ F = m \cdot a \][/tex]
Here's the step-by-step process:
1. Identify the given values:
- Mass ([tex]\( m \)[/tex]) of the truck: 3000 kg
- Acceleration ([tex]\( a \)[/tex]): 2.0 m/s²
2. Substitute the given values into the formula:
[tex]\[ F = 3000 \, \text{kg} \times 2.0 \, \text{m/s}^2 \][/tex]
3. Perform the multiplication:
[tex]\[ F = 6000 \, \text{N} \][/tex]
4. Interpret the result:
The calculated force [tex]\( F \)[/tex] needed to accelerate the truck is 6000 N.
So, the correct answer is:
[tex]\[ D. \ 6000 \ \text{N} \][/tex]
[tex]\[ F = m \cdot a \][/tex]
Here's the step-by-step process:
1. Identify the given values:
- Mass ([tex]\( m \)[/tex]) of the truck: 3000 kg
- Acceleration ([tex]\( a \)[/tex]): 2.0 m/s²
2. Substitute the given values into the formula:
[tex]\[ F = 3000 \, \text{kg} \times 2.0 \, \text{m/s}^2 \][/tex]
3. Perform the multiplication:
[tex]\[ F = 6000 \, \text{N} \][/tex]
4. Interpret the result:
The calculated force [tex]\( F \)[/tex] needed to accelerate the truck is 6000 N.
So, the correct answer is:
[tex]\[ D. \ 6000 \ \text{N} \][/tex]