For the following, find the real zeros of [tex]f[/tex]. Use the real zeros to factor [tex]f[/tex].

[tex]\ \textless \ br/\ \textgreater \ f(x) = 7x^4 + 6x^3 - 78x^2 - 66x + 11\ \textless \ br/\ \textgreater \ [/tex]

Find the real zero(s) of [tex]f[/tex]. Select the correct choice below and, if necessary, fill in the answer box to complete your answer.

A. The real zero(s) of [tex]f[/tex] is/are [tex]x = -\sqrt{11}, -1, \sqrt{11}, \frac{1}{7}[/tex]. [tex]\square[/tex] (Simplify your answer. Type an exact answer, using radicals as needed. Use a comma to separate answers as needed. Type each solution only once.)

B. There are no real zeros.

Use the real zero(s) to factor [tex]f[/tex].

[tex]\ \textless \ br/\ \textgreater \ f(x) = \square\ \textless \ br/\ \textgreater \ [/tex]
(Factor completely. Type an exact answer, using radicals as needed. Use integers or fractions for any numbers in the expression.)



Answer :

First, let's find the real zeros of the polynomial function [tex]\( f(x) = 7x^4 + 6x^3 - 78x^2 - 66x + 11 \)[/tex].

The real zeros of the polynomial [tex]\( f \)[/tex] are the values of [tex]\( x \)[/tex] that make the equation [tex]\( f(x) = 0 \)[/tex] true. Based on the calculations and simplifications:

The real zeros of [tex]\( f \)[/tex] are:
[tex]\[ x = -\sqrt{11}, -1, \sqrt{11}, \frac{1}{7} \][/tex]

So the correct choice is:
A. The real zero(s) of [tex]\( f \)[/tex] is/are [tex]\(-\sqrt{11}, -1, \sqrt{11}, \frac{1}{7}\)[/tex].

Next, we use these real zeros to factor the polynomial [tex]\( f \)[/tex]. The zeros tell us the factors of [tex]\( f(x) \)[/tex] in the form:
[tex]\[ (x + \sqrt{11})(x - \sqrt{11})(x + 1)\left(x - \frac{1}{7}\right) \][/tex]

We can combine [tex]\( (x + \sqrt{11})(x - \sqrt{11}) \)[/tex] into [tex]\( (x^2 - 11) \)[/tex], and [tex]\( \left(x - \frac{1}{7}\right) \)[/tex] can be rewritten as [tex]\( (7x - 1) \)[/tex] to match the polynomials' degrees and simplify:

The fully factored form of [tex]\( f(x) \)[/tex] is:
[tex]\[ f(x) = (x + 1)(7x - 1)(x^2 - 11) \][/tex]