Use the Binomial Theorem to expand the expression [tex](4y + 2x)^3[/tex]. Then find the 4th term.

A. [tex]8x^3[/tex]
B. [tex]48yx^2[/tex]
C. [tex]64y^3[/tex]
D. [tex]9x^3[/tex]



Answer :

To solve the problem, we need to use the Binomial Theorem to expand the expression [tex]\((4y + 2x)^3\)[/tex]. The Binomial Theorem states that:

[tex]\[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \][/tex]

For the expression [tex]\((4y + 2x)^3\)[/tex], we can identify:
- [tex]\(a = 4y\)[/tex]
- [tex]\(b = 2x\)[/tex]
- [tex]\(n = 3\)[/tex]

We will expand this expression by calculating each term where [tex]\(k\)[/tex] varies from 0 to [tex]\(n\)[/tex].

[tex]\[ (4y + 2x)^3 = \sum_{k=0}^{3} \binom{3}{k} (4y)^{3-k} (2x)^k \][/tex]

Let's compute each term individually:

### Term when [tex]\(k = 0\)[/tex]:

[tex]\[ \binom{3}{0} (4y)^{3-0} (2x)^0 = \binom{3}{0} (4y)^3 = 1 \cdot 64y^3 = 64y^3 \][/tex]

### Term when [tex]\(k = 1\)[/tex]:

[tex]\[ \binom{3}{1} (4y)^{3-1} (2x)^1 = \binom{3}{1} (4y)^2 (2x) = 3 \cdot 16y^2 \cdot 2x = 3 \cdot 32y^2x = 96y^2x \][/tex]

### Term when [tex]\(k = 2\)[/tex]:

[tex]\[ \binom{3}{2} (4y)^{3-2} (2x)^2 = \binom{3}{2} (4y) (2x)^2 = 3 \cdot 4y \cdot 4x^2 = 3 \cdot 16yx^2 = 48yx^2 \][/tex]

### Term when [tex]\(k = 3\)[/tex]:

[tex]\[ \binom{3}{3} (4y)^{3-3} (2x)^3 = \binom{3}{3} (4y)^0 (2x)^3 = 1 \cdot 8x^3 = 8x^3 \][/tex]

So the expansion of [tex]\((4y + 2x)^3\)[/tex] is:

[tex]\[ (4y + 2x)^3 = 64y^3 + 96y^2x + 48yx^2 + 8x^3 \][/tex]

To find the 4th term, we look at the sequence of terms obtained. The 4th term in this expansion is:

[tex]\[ 8x^3 \][/tex]

Hence, the 4th term is:

[tex]\[ 8x^3 \][/tex]

Thus, the correct answer among the given choices is:

[tex]\[ \boxed{8x^3} \][/tex]