Use a calculator to find the values of the inverse trigonometric functions. Round to the nearest degree.

[tex]\[
\begin{array}{l}
\sin ^{-1}\left(\frac{2}{3}\right)= \square^{\circ} \\
\tan ^{-1}(4)= \square^{\circ} \\
\cos ^{-1}(0.1)= \square^{\circ}
\end{array}
\][/tex]



Answer :

To solve for the given inverse trigonometric functions and round the results to the nearest degree, let's proceed step-by-step.

1. Calculate [tex]\( \sin^{-1}\left( \frac{2}{3} \right) \)[/tex]:

- First, input [tex]\( \frac{2}{3} \)[/tex] into the arcsine function on the calculator.
- The result will be in radians. Convert this result to degrees.
- Finally, round the result to the nearest degree.

By performing these steps, we find:

[tex]\[ \sin^{-1}\left( \frac{2}{3} \right) \approx 42^{\circ} \][/tex]

2. Calculate [tex]\( \tan^{-1}(4) \)[/tex]:

- First, input [tex]\( 4 \)[/tex] into the arctangent function on the calculator.
- The result will be in radians. Convert this result to degrees.
- Finally, round the result to the nearest degree.

By performing these steps, we find:

[tex]\[ \tan^{-1}(4) \approx 76^{\circ} \][/tex]

3. Calculate [tex]\( \cos^{-1}(0.1) \)[/tex]:

- First, input [tex]\( 0.1 \)[/tex] into the arccosine function on the calculator.
- The result will be in radians. Convert this result to degrees.
- Finally, round the result to the nearest degree.

By performing these steps, we find:

[tex]\[ \cos^{-1}(0.1) \approx 84^{\circ} \][/tex]

So, in summary, the rounded values of the inverse trigonometric functions are:

[tex]\[ \begin{array}{l} \sin^{-1}\left( \frac{2}{3} \right) = 42^{\circ} \\ \tan^{-1}(4) = 76^{\circ} \\ \cos^{-1}(0.1) = 84^{\circ} \end{array} \][/tex]