Answer :
Sure, let's go through the steps described in your problem systematically.
### Part 1:
Step 1: Plot the point [tex]\((2,4)\)[/tex].
Step 2: From that point, count left 3 units and down 1 unit and plot a second point.
- The initial point is [tex]\((2, 4)\)[/tex].
- Moving left 3 units means subtracting 3 from the x-coordinate: [tex]\(2 - 3 = -1\)[/tex].
- Moving down 1 unit means subtracting 1 from the y-coordinate: [tex]\(4 - 1 = 3\)[/tex].
- So, the second point is [tex]\((-1, 3)\)[/tex].
Step 3: Draw a line through the two points [tex]\((2, 4)\)[/tex] and [tex]\((-1, 3)\)[/tex].
### Part 2:
Step 1: Plot the point [tex]\((2,4)\)[/tex].
Step 2: From that point, count left 1 unit and down 3 units and plot a second point.
- The initial point is [tex]\((2, 4)\)[/tex].
- Moving left 1 unit means subtracting 1 from the x-coordinate: [tex]\(2 - 1 = 1\)[/tex].
- Moving down 3 units means subtracting 3 from the y-coordinate: [tex]\(4 - 3 = 1\)[/tex].
- So, the second point is [tex]\((1, 1)\)[/tex].
Step 3: Draw a line through the two points [tex]\((2, 4)\)[/tex] and [tex]\((1, 1)\)[/tex].
### Part 3:
Step 1: Plot the point [tex]\((-2, 4)\)[/tex].
Step 2: From that point, count left 3 units and down 1 unit and plot a second point.
- The initial point is [tex]\((-2, 4)\)[/tex].
- Moving left 3 units means subtracting 3 from the x-coordinate: [tex]\(-2 - 3 = -5\)[/tex].
- Moving down 1 unit means subtracting 1 from the y-coordinate: [tex]\(4 - 1 = 3\)[/tex].
- So, the second point is [tex]\((-5, 3)\)[/tex].
Step 3: Draw a line through the two points [tex]\((-2, 4)\)[/tex] and [tex]\((-5, 3)\)[/tex].
### Part 4:
Step 1: Plot the point [tex]\((-2, 4)\)[/tex].
Step 2: From that point, count left 1 unit and down 3 units and plot a second point.
- The initial point is [tex]\((-2, 4)\)[/tex].
- Moving left 1 unit means subtracting 1 from the x-coordinate: [tex]\(-2 - 1 = -3\)[/tex].
- Moving down 3 units means subtracting 3 from the y-coordinate: [tex]\(4 - 3 = 1\)[/tex].
- So, the second point is [tex]\((-3, 1)\)[/tex].
Step 3: Draw a line through the two points [tex]\((-2, 4)\)[/tex] and [tex]\((-3, 1)\)[/tex].
### Summary of Points:
- From Point [tex]\((2, 4)\)[/tex]:
- Moving left 3 and down 1: [tex]\((-1, 3)\)[/tex]
- Moving left 1 and down 3: [tex]\((1, 1)\)[/tex]
- From Point [tex]\((-2, 4)\)[/tex]:
- Moving left 3 and down 1: [tex]\((-5, 3)\)[/tex]
- Moving left 1 and down 3: [tex]\((-3, 1)\)[/tex]
### Lines to Draw:
- Line through points [tex]\((2, 4)\)[/tex] and [tex]\((-1, 3)\)[/tex]
- Line through points [tex]\((2, 4)\)[/tex] and [tex]\((1, 1)\)[/tex]
- Line through points [tex]\((-2, 4)\)[/tex] and [tex]\((-5, 3)\)[/tex]
- Line through points [tex]\((-2, 4)\)[/tex] and [tex]\((-3, 1)\)[/tex]
By plotting these points and drawing the respective lines, you can visualize the described problem steps on a coordinate plane.
### Part 1:
Step 1: Plot the point [tex]\((2,4)\)[/tex].
Step 2: From that point, count left 3 units and down 1 unit and plot a second point.
- The initial point is [tex]\((2, 4)\)[/tex].
- Moving left 3 units means subtracting 3 from the x-coordinate: [tex]\(2 - 3 = -1\)[/tex].
- Moving down 1 unit means subtracting 1 from the y-coordinate: [tex]\(4 - 1 = 3\)[/tex].
- So, the second point is [tex]\((-1, 3)\)[/tex].
Step 3: Draw a line through the two points [tex]\((2, 4)\)[/tex] and [tex]\((-1, 3)\)[/tex].
### Part 2:
Step 1: Plot the point [tex]\((2,4)\)[/tex].
Step 2: From that point, count left 1 unit and down 3 units and plot a second point.
- The initial point is [tex]\((2, 4)\)[/tex].
- Moving left 1 unit means subtracting 1 from the x-coordinate: [tex]\(2 - 1 = 1\)[/tex].
- Moving down 3 units means subtracting 3 from the y-coordinate: [tex]\(4 - 3 = 1\)[/tex].
- So, the second point is [tex]\((1, 1)\)[/tex].
Step 3: Draw a line through the two points [tex]\((2, 4)\)[/tex] and [tex]\((1, 1)\)[/tex].
### Part 3:
Step 1: Plot the point [tex]\((-2, 4)\)[/tex].
Step 2: From that point, count left 3 units and down 1 unit and plot a second point.
- The initial point is [tex]\((-2, 4)\)[/tex].
- Moving left 3 units means subtracting 3 from the x-coordinate: [tex]\(-2 - 3 = -5\)[/tex].
- Moving down 1 unit means subtracting 1 from the y-coordinate: [tex]\(4 - 1 = 3\)[/tex].
- So, the second point is [tex]\((-5, 3)\)[/tex].
Step 3: Draw a line through the two points [tex]\((-2, 4)\)[/tex] and [tex]\((-5, 3)\)[/tex].
### Part 4:
Step 1: Plot the point [tex]\((-2, 4)\)[/tex].
Step 2: From that point, count left 1 unit and down 3 units and plot a second point.
- The initial point is [tex]\((-2, 4)\)[/tex].
- Moving left 1 unit means subtracting 1 from the x-coordinate: [tex]\(-2 - 1 = -3\)[/tex].
- Moving down 3 units means subtracting 3 from the y-coordinate: [tex]\(4 - 3 = 1\)[/tex].
- So, the second point is [tex]\((-3, 1)\)[/tex].
Step 3: Draw a line through the two points [tex]\((-2, 4)\)[/tex] and [tex]\((-3, 1)\)[/tex].
### Summary of Points:
- From Point [tex]\((2, 4)\)[/tex]:
- Moving left 3 and down 1: [tex]\((-1, 3)\)[/tex]
- Moving left 1 and down 3: [tex]\((1, 1)\)[/tex]
- From Point [tex]\((-2, 4)\)[/tex]:
- Moving left 3 and down 1: [tex]\((-5, 3)\)[/tex]
- Moving left 1 and down 3: [tex]\((-3, 1)\)[/tex]
### Lines to Draw:
- Line through points [tex]\((2, 4)\)[/tex] and [tex]\((-1, 3)\)[/tex]
- Line through points [tex]\((2, 4)\)[/tex] and [tex]\((1, 1)\)[/tex]
- Line through points [tex]\((-2, 4)\)[/tex] and [tex]\((-5, 3)\)[/tex]
- Line through points [tex]\((-2, 4)\)[/tex] and [tex]\((-3, 1)\)[/tex]
By plotting these points and drawing the respective lines, you can visualize the described problem steps on a coordinate plane.