Which line represents the linear equation [tex]\(-3y = 15 - 4x\)[/tex]?

1. Rewrite the equation [tex]\(-3y = 15 - 4x\)[/tex] in slope-intercept form.
2. Identify the [tex]\(y\)[/tex]-intercept and the slope of the line.

Line [tex]\(\square\)[/tex] is the graph of the line [tex]\(-3y = 15 - 4x\)[/tex].



Answer :

To find the line that represents the linear equation [tex]\(-3y = 15 - 4x\)[/tex], let's start by rewriting it in the slope-intercept form [tex]\(y = mx + b\)[/tex].

1. Isolate [tex]\( y \)[/tex] on one side of the equation:
[tex]\[ -3y = 15 - 4x \][/tex]

2. Divide both sides by [tex]\(-3\)[/tex] to solve for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{15 - 4x}{-3} \][/tex]

3. Simplify the right-hand side:
[tex]\[ y = \frac{15}{-3} + \frac{-4x}{-3} \][/tex]
[tex]\[ y = -5 + \frac{4}{3}x \][/tex]

4. Rewrite the equation in the slope-intercept form [tex]\(y = mx + b\)[/tex]:
[tex]\[ y = \frac{4}{3}x - 5 \][/tex]

So, the equation [tex]\(-3y = 15 - 4x\)[/tex] rewritten in slope-intercept form is:
[tex]\[ y = \frac{4}{3}x - 5 \][/tex]

Next, we identify the slope ([tex]\(m\)[/tex]) and the [tex]\(y\)[/tex]-intercept ([tex]\(b\)[/tex]) from the slope-intercept form [tex]\(y = mx + b\)[/tex].

- The [tex]\(y\)[/tex]-intercept ([tex]\(b\)[/tex]) is:
[tex]\[ -5 \][/tex]

- The slope ([tex]\(m\)[/tex]) is:
[tex]\[ \frac{4}{3} \][/tex]

Finally, to summarize:
- The equation [tex]\(-3y = 15 - 4x\)[/tex] rewritten in slope-intercept form is:
[tex]\[ y = \frac{4}{3}x - 5 \][/tex]

- The [tex]\(y\)[/tex]-intercept is:
[tex]\[ -5 \][/tex]

- The slope of the line is:
[tex]\[ \frac{4}{3} \][/tex]

Therefore, the line representing the linear equation [tex]\(-3y = 15 - 4x\)[/tex] is:
[tex]\[ \boxed{y = \frac{4}{3}x - 5} \][/tex]