Answer :

Sure, let me guide you through the process of finding 10 rational numbers between [tex]\(\frac{1}{5}\)[/tex] and 2.

1. Understanding the Range:
The range you are given is between [tex]\(\frac{1}{5}\)[/tex] (which is equivalent to 0.2) and 2.

2. Dividing the Range:
To find 10 rational numbers between these two endpoints, you can divide the interval [tex]\((0.2, 2)\)[/tex] into 11 equal parts. When you divide a range into [tex]\(n\)[/tex] parts, you get [tex]\(n - 1\)[/tex] internal points.

3. Calculating the Step Size:
The step size can be determined by subtracting the starting point from the ending point and then dividing by the number of parts.
[tex]\[ \text{Step size} = \frac{2 - 0.2}{11} = \frac{1.8}{11} \approx 0.16363636363636365 \][/tex]

4. Generating the Rational Numbers:
Starting from [tex]\(\frac{1}{5}\)[/tex] (0.2), you then add the step size to generate the sequence:
[tex]\[ \text{First point: } 0.2 + 0.16363636363636365 \approx 0.36363636363636365 \][/tex]
[tex]\[ \text{Second point: } 0.2 + 2 \times 0.16363636363636365 \approx 0.5272727272727273 \][/tex]
[tex]\[ \text{Third point: } 0.2 + 3 \times 0.16363636363636365 \approx 0.6909090909090909 \][/tex]
[tex]\[ \text{Fourth point: } 0.2 + 4 \times 0.16363636363636365 \approx 0.8545454545454545 \][/tex]
[tex]\[ \text{Fifth point: } 0.2 + 5 \times 0.16363636363636365 \approx 1.018181818181818 \][/tex]
[tex]\[ \text{Sixth point: } 0.2 + 6 \times 0.16363636363636365 \approx 1.1818181818181819 \][/tex]
[tex]\[ \text{Seventh point: } 0.2 + 7 \times 0.16363636363636365 \approx 1.3454545454545455 \][/tex]
[tex]\[ \text{Eighth point: } 0.2 + 8 \times 0.16363636363636365 \approx 1.509090909090909 \][/tex]
[tex]\[ \text{Ninth point: } 0.2 + 9 \times 0.16363636363636365 \approx 1.6727272727272726 \][/tex]
[tex]\[ \text{Tenth point: } 0.2 + 10 \times 0.16363636363636365 \approx 1.8363636363636362 \][/tex]

5. Final List of Rational Numbers:
The 10 rational numbers between [tex]\(\frac{1}{5}\)[/tex] and 2 are:
[tex]\[ \begin{align*} 0.36363636363636365, \\ 0.5272727272727273, \\ 0.6909090909090909, \\ 0.8545454545454545, \\ 1.018181818181818, \\ 1.1818181818181819, \\ 1.3454545454545455, \\ 1.509090909090909, \\ 1.6727272727272726, \\ 1.8363636363636362 \end{align*} \][/tex]
These values effectively partition the range from [tex]\(\frac{1}{5}\)[/tex] to 2 into ten equal intervals, providing you with 10 rational numbers within the specified range.