Rewrite the equation in [tex][tex]$Ax + By = C$[/tex][/tex] form. Use integers for [tex][tex]$A, B,$[/tex][/tex] and [tex][tex]$C$[/tex][/tex].

[tex]y = \frac{1}{6}x - 1[/tex]



Answer :

Sure, let's rewrite the given equation [tex]\( y = \frac{1}{6}x - 1 \)[/tex] in the form [tex]\( Ax + By = C \)[/tex] using integer coefficients for [tex]\( A \)[/tex], [tex]\( B \)[/tex], and [tex]\( C \)[/tex].

1. Start with the given equation:
[tex]\[ y = \frac{1}{6}x - 1 \][/tex]

2. To eliminate the fraction, multiply every term by 6:
[tex]\[ 6y = x - 6 \][/tex]

3. Rearrange the terms to achieve the desired form [tex]\( Ax + By = C \)[/tex]:
- Subtract [tex]\( x \)[/tex] from both sides to bring [tex]\( x \)[/tex] to the left-hand side:
[tex]\[ 6y - x = -6 \][/tex]

- For standard form, it's conventional to write the [tex]\( x \)[/tex]-term first. We have:
[tex]\[ -x + 6y = -6 \][/tex]

However, it's more standard (and often preferable) to have the coefficient of the [tex]\( x \)[/tex]-term positive. Therefore, multiply through by -1:
[tex]\[ x - 6y = 6 \][/tex]

So, the equation [tex]\( y = \frac{1}{6}x - 1 \)[/tex] in the form [tex]\( Ax + By = C \)[/tex] with integer coefficients is:
[tex]\[ x - 6y = 6 \][/tex]

Where:
- [tex]\( A = 1 \)[/tex]
- [tex]\( B = -6 \)[/tex]
- [tex]\( C = 6 \)[/tex]

Thus, rewritten, it is:
[tex]\[ x - 6y = 6 \][/tex]