To find the frequency of a wave, we can use the formula:
[tex]\[
f = \frac{v}{\lambda}
\][/tex]
where:
- [tex]\( f \)[/tex] is the frequency of the wave,
- [tex]\( v \)[/tex] is the speed of the wave, and
- [tex]\( \lambda \)[/tex] is the wavelength of the wave (the distance between crests).
Given:
- The speed [tex]\( v \)[/tex] of the wave is [tex]\( 74 \, \text{m/s} \)[/tex],
- The wavelength [tex]\( \lambda \)[/tex] is [tex]\( 12 \, \text{m} \)[/tex].
Plug these values into the formula:
[tex]\[
f = \frac{74 \, \text{m/s}}{12 \, \text{m}}
\][/tex]
[tex]\[
f = 6.166666666666667 \, \text{Hz}
\][/tex]
Rounding to one decimal place, the frequency [tex]\( f \)[/tex] is approximately [tex]\( 6.2 \, \text{Hz} \)[/tex].
So, the correct answer is:
A. [tex]\( 6.2 \, \text{Hz} \)[/tex]