Answer :

Answer:

c. 1.79

Step-by-step explanation:

Change of Base Formula

When changing the base of a logarithm so that it maintains its value, this formula can be applied:

                                           [tex]log_b(a)=\dfrac{log_d(a)}{log_d(b)}[/tex],

where  [tex]b\neq d[/tex].

[tex]\dotfill[/tex]

Applying the Formula

In this problem, b = 4, a = 12 and d = e (natural constant).

All we have to do is plug it in and evaluate its numerical value.

                                          [tex]\dfrac{log_e(12)}{log_e(4)} =1.79[/tex]

We can verify by evaluating the value of the original logarithm,

                                           [tex]log_4(12)=1.79[/tex].

Since they're the same, 1.79 is our final answer.