(ii) कल समीकरण [tex][tex]$2 x\left(y x^{x^2}-1\right) dx + e^{x^2} dy = 0$[/tex][/tex] की यर्थांर्था की जाँच कीजिये।



Answer :

एक संभावित उत्तर यहाँ प्रस्तुत किया गया है:

हमें दिए गए समीकरण [tex]\(2 x\left(y x^{x^2}-1\right) d x + e^{x^2} d y = 0\)[/tex] की यथार्थता की जांच करनी है। इसके लिए, हमें पहले इसे मानक रूप में विभाजित करना होगा:

मानक रूप है [tex]\( M(x, y) dx + N(x, y) dy = 0 \)[/tex], जहां
[tex]\[ M(x, y) = 2 x\left(y x^{x^2} - 1\right) \][/tex]
[tex]\[ N(x, y) = e^{x^2} \][/tex]

यथार्थ समीकरण के लिए, हमें यह जाँचने के लिए आंशिक अवकलन (partial derivatives) का उपयोग करना होगा कि क्या [tex]\(\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}\)[/tex]:

पहला, [tex]\( M \)[/tex] का [tex]\( y \)[/tex] के सापेक्ष आंशिक अवकलन निकालते हैं:
[tex]\[ \frac{\partial M}{\partial y} = \frac{\partial}{\partial y} \left[2 x\left(y x^{x^2} - 1\right)\right] = 2 x \cdot x^{x^2} \][/tex]

दूसरा, [tex]\( N \)[/tex] का [tex]\( x \)[/tex] के सापेक्ष आंशिक अवकलन निकालते हैं:
[tex]\[ \frac{\partial N}{\partial x} = \frac{\partial}{\partial x} \left[e^{x^2}\right] = 2 x e^{x^2} \][/tex]

अब हमने [tex]\(\frac{\partial M}{\partial y}\)[/tex] और [tex]\(\frac{\partial N}{\partial x}\)[/tex] को प्राप्त कर लिया है:
[tex]\[ \frac{\partial M}{\partial y} = 2 x x^{x^2} \][/tex]
[tex]\[ \frac{\partial N}{\partial x} = 2 x e^{x^2} \][/tex]

अंत में, यथार्थता की जाँच करने के लिए, हम [tex]\( \frac{\partial M}{\partial y} \)[/tex] और [tex]\( \frac{\partial N}{\partial x} \)[/tex] की तुलना करते हैं:
[tex]\[ \frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = 2 x x^{x^2} - 2 x e^{x^2} \][/tex]

क्योंकि [tex]\( \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x} \)[/tex] (2x [tex]\(x^{x^2}\)[/tex] - 2x [tex]\(e^{x^2}\)[/tex] बराबर नहीं हैं),

इसलिए, दिया गया समीकरण यथार्थ नहीं है।