Answer :

To find the value of the expression [tex]\(\frac{2 x^2}{x} + x(100 - 15x)\)[/tex] when [tex]\(x = 5\)[/tex], we will evaluate each term in the expression step-by-step.

1. Start by substituting [tex]\(x = 5\)[/tex] into the first term:
[tex]\[ \frac{2 x^2}{x} \][/tex]
Replacing [tex]\(x\)[/tex] with 5:
[tex]\[ \frac{2 \cdot 5^2}{5} \][/tex]
Calculate [tex]\(5^2\)[/tex]:
[tex]\[ 5^2 = 25 \][/tex]
Now, multiply by 2:
[tex]\[ 2 \cdot 25 = 50 \][/tex]
Finally, divide by 5:
[tex]\[ \frac{50}{5} = 10 \][/tex]
So, the first term when [tex]\(x = 5\)[/tex] is 10.

2. Next, substitute [tex]\(x = 5\)[/tex] into the second term:
[tex]\[ x(100 - 15x) \][/tex]
Replacing [tex]\(x\)[/tex] with 5:
[tex]\[ 5(100 - 15 \cdot 5) \][/tex]
First, calculate the multiplication inside the parentheses:
[tex]\[ 15 \cdot 5 = 75 \][/tex]
Now, subtract from 100:
[tex]\[ 100 - 75 = 25 \][/tex]
Finally, multiply by 5:
[tex]\[ 5 \cdot 25 = 125 \][/tex]
So, the second term when [tex]\(x = 5\)[/tex] is 125.

3. To find the total value of the expression, sum the first and second terms:
[tex]\[ 10 + 125 \][/tex]
This gives:
[tex]\[ 10 + 125 = 135 \][/tex]

Therefore, the value of the expression [tex]\(\frac{2 x^2}{x} + x(100 - 15x)\)[/tex] when [tex]\(x = 5\)[/tex] is [tex]\(\boxed{135}\)[/tex].