Complete the table for the function [tex][tex]$y=\sqrt[3]{x}+7$[/tex][/tex].

\begin{tabular}{|l|l|l|l|l|}
\hline
[tex]$x$[/tex] & -8 & -1 & 1 & 8 \\
\hline
[tex]$y$[/tex] & & & & \\
\hline
\end{tabular}

A) 9, 8, 6, 5

B) 5, 6, 8, 9

C) -5, -6, -8, -9

D) -9, -8, -6, -5



Answer :

Certainly! Let's complete the table step by step for the function [tex]\( y = \sqrt[3]{x} + 7 \)[/tex].

First, we need to find the cube root of each [tex]\( x \)[/tex] value and then add 7 to it:

1. For [tex]\( x = -8 \)[/tex]:
[tex]\[ y = \sqrt[3]{-8} + 7 \][/tex]
[tex]\[ y = -2 + 7 \][/tex]
[tex]\[ y = 5 \][/tex]

2. For [tex]\( x = -1 \)[/tex]:
[tex]\[ y = \sqrt[3]{-1} + 7 \][/tex]
[tex]\[ y = -1 + 7 \][/tex]
[tex]\[ y = 6 \][/tex]

3. For [tex]\( x = 1 \)[/tex]:
[tex]\[ y = \sqrt[3]{1} + 7 \][/tex]
[tex]\[ y = 1 + 7 \][/tex]
[tex]\[ y = 8 \][/tex]

4. For [tex]\( x = 8 \)[/tex]:
[tex]\[ y = \sqrt[3]{8} + 7 \][/tex]
[tex]\[ y = 2 + 7 \][/tex]
[tex]\[ y = 9 \][/tex]

So, after calculating the values of [tex]\( y \)[/tex], we get the following table:

[tex]\[ \begin{tabular}{|l|l|l|l|l|} \hline $x$ & -8 & -1 & 1 & 8 \\ \hline $y$ & 5 & 6 & 8 & 9 \\ \hline \end{tabular} \][/tex]

Hence, the correct answer is:
B) [tex]\( 5, 6, 8, 9 \)[/tex]