### Simplify Radicals

Task: Simplify the expression.

Simplifying radicals with addition/subtraction is just like combining like terms!

[tex]\[ 2 \sqrt{45} + 3 \sqrt{5} + \sqrt{12} - 6 \sqrt{3} \][/tex]

1. Combine any of the radicals that are like terms.
2. No like terms? Can you simplify any of them?
3. Now combine any of them that are similar.



Answer :

Let's simplify the given expression step-by-step: [tex]\(2 \sqrt{45} + 3 \sqrt{5} + \sqrt{12} - 6 \sqrt{3}\)[/tex].

### Step 1: Simplify individual square roots

First, let's simplify each radical term individually if possible.

1. [tex]\( \sqrt{45} \)[/tex]:
[tex]\[ \sqrt{45} = \sqrt{9 \times 5} = \sqrt{9} \times \sqrt{5} = 3\sqrt{5} \][/tex]

Therefore,
[tex]\[ 2 \sqrt{45} = 2 \times 3 \sqrt{5} = 6 \sqrt{5} \][/tex]

2. [tex]\( \sqrt{12} \)[/tex]:
[tex]\[ \sqrt{12} = \sqrt{4 \times 3} = \sqrt{4} \times \sqrt{3} = 2 \sqrt{3} \][/tex]

Therefore,
[tex]\[ \sqrt{12} = 2 \sqrt{3} \][/tex]

### Step 2: Rewrite the expression with simplified radicals

Let's substitute back the simplified radicals into the expression:

[tex]\[ 6 \sqrt{5} + 3 \sqrt{5} + 2 \sqrt{3} - 6 \sqrt{3} \][/tex]

### Step 3: Combine like terms

Now we will combine the like terms:

- Combine the [tex]\( \sqrt{5} \)[/tex] terms:
[tex]\[ 6 \sqrt{5} + 3 \sqrt{5} = (6 + 3) \sqrt{5} = 9 \sqrt{5} \][/tex]

- Combine the [tex]\( \sqrt{3} \)[/tex] terms:
[tex]\[ 2 \sqrt{3} - 6 \sqrt{3} = (2 - 6) \sqrt{3} = -4 \sqrt{3} \][/tex]

### Step 4: Write the final simplified expression

The simplified expression is:

[tex]\[ 9 \sqrt{5} - 4 \sqrt{3} \][/tex]

So, [tex]\(2 \sqrt{45} + 3 \sqrt{5} + \sqrt{12} - 6 \sqrt{3} = 9 \sqrt{5} - 4 \sqrt{3}\)[/tex].
9*root 5 - 4*root 3.
45 = 9*5
12 = 4*3
pull out 2^2 and 3^2 as coefficients
for root 5, the 3 multiplies with the 2 = 6 + 3 = 9
for root 3, the 2 is added to -6, yielding -4
add these all up and you get 9 of root 5 minus 4 of root 3, or 9*root 5 - 4*root 3