Type the correct answer in each box.

A race car is driven by a professional driver at [tex]99 \frac{\text{miles}}{\text{hour}}[/tex]. What is this speed in [tex]\frac{\text{kilometers}}{\text{hour}}[/tex] and [tex]\frac{\text{kilometers}}{\text{minute}}[/tex]?

1 mile = 1.61 kilometers
1 hour = 60 minutes

Express the answers to the correct number of significant figures.

The speed is equivalent to [tex]\square[/tex] [tex]\frac{\text{kilometers}}{\text{hour}}[/tex], or [tex]\square[/tex] [tex]\frac{\text{kilometers}}{\text{minute}}[/tex].



Answer :

To convert the speed of a race car driven at [tex]\(99 \, \frac{\text {miles}}{\text {hour}}\)[/tex] to [tex]\(\frac{\text {kilometers}}{\text {hour}}\)[/tex] and [tex]\(\frac{\text {kilometers}}{\text {minute}}\)[/tex], follow these steps:

1. Convert miles per hour to kilometers per hour:
- Given [tex]\(1 \, \text{mile} = 1.61 \, \text{kilometers}\)[/tex].
- Multiply the speed in miles per hour by the conversion factor to find the speed in kilometers per hour.
- The calculation is as follows:
[tex]\[ 99 \, \frac{\text{miles}}{\text{hour}} \times 1.61 \, \frac{\text{kilometers}}{\text{mile}} = 159.39 \, \frac{\text{kilometers}}{\text{hour}} \][/tex]

2. Convert kilometers per hour to kilometers per minute:
- Given [tex]\(1 \, \text{hour} = 60 \, \text{minutes}\)[/tex].
- Divide the speed in kilometers per hour by the number of minutes in an hour to find the speed in kilometers per minute.
- The calculation is as follows:
[tex]\[ 159.39 \, \frac{\text{kilometers}}{\text{hour}} \div 60 \, \frac{\text{minutes}}{\text{hour}} = 2.66 \, \frac{\text{kilometers}}{\text{minute}} \][/tex]

Therefore, the speed of [tex]\(99 \, \frac{\text{miles}}{\text{hour}}\)[/tex] is equivalent to [tex]\(159.39 \, \frac{\text{kilometers}}{\text{hour}}\)[/tex], or [tex]\(2.66 \, \frac{\text{kilometers}}{\text{minute}}\)[/tex].

The speed is equivalent to [tex]\(159.39\)[/tex] [tex]\(\frac{\text {kilometers}}{\text {hour}}\)[/tex], or [tex]\(2.66\)[/tex] [tex]\(\frac{\text{kilometers}}{\text{minute}}\)[/tex].