A trait has two alleles, and their frequencies are represented by [tex][tex]$p$[/tex][/tex] and [tex][tex]$q$[/tex][/tex]. If [tex][tex]$p=0.68$[/tex][/tex], what is [tex][tex]$q$[/tex][/tex]?

A. 0.57
B. 0.68
C. 0.82
D. 0.32



Answer :

To find the value of [tex]\( q \)[/tex] when the frequency of the allele [tex]\( p \)[/tex] is given, we need to remember that the sum of the frequencies of the two alleles must equal 1. This is rooted in basic principles of genetic frequency, where:

[tex]\[ p + q = 1 \][/tex]

Given that [tex]\( p = 0.68 \)[/tex], we can determine [tex]\( q \)[/tex] by rearranging the equation to solve for [tex]\( q \)[/tex]:

[tex]\[ q = 1 - p \][/tex]

Substitute the given value of [tex]\( p \)[/tex]:

[tex]\[ q = 1 - 0.68 \][/tex]

Perform the subtraction:

[tex]\[ q = 0.32 \][/tex]

Hence, the frequency of allele [tex]\( q \)[/tex] is [tex]\( 0.32 \)[/tex], therefore the correct answer is:

D. 0.32