Two angles are complementary to each other. One angle measures [tex]18^{\circ}[/tex], and the other angle measures [tex](8x - 28)^{\circ}[/tex]. Determine the value of [tex]x[/tex].

A. 12.5
B. 20
C. 44.5
D. 16



Answer :

Complementary angles are two angles that add up to [tex]\(90^\circ\)[/tex].

Given:
- One angle measures [tex]\(18^\circ\)[/tex]
- The other angle measures [tex]\((8x - 28)^\circ\)[/tex]

To find the value of [tex]\(x\)[/tex], we can set up the equation:

[tex]\[ 18^\circ + (8x - 28)^\circ = 90^\circ \][/tex]

Let's simplify and solve this equation step-by-step.

1. Combine the angles on the left-hand side of the equation:
[tex]\[ 18 + 8x - 28 = 90 \][/tex]

2. Simplify the constants on the left-hand side:
[tex]\[ 8x - 10 = 90 \][/tex]

3. Add 10 to both sides of the equation to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ 8x - 10 + 10 = 90 + 10 \][/tex]
[tex]\[ 8x = 100 \][/tex]

4. Divide both sides by 8 to solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{100}{8} \][/tex]
[tex]\[ x = 12.5 \][/tex]

Therefore, the value of [tex]\(x\)[/tex] is [tex]\(12.5\)[/tex]. This matches the first answer choice given:

12.5
20
44.5
16

Thus, the correct answer is:

[tex]\[ \boxed{12.5} \][/tex]