Perform the indicated operation.

[tex]\[ 10 \frac{3}{7} + 19 \frac{5}{9} \][/tex]

A. [tex]\( 29 \frac{62}{63} \)[/tex]
B. [tex]\( 29 \frac{8}{63} \)[/tex]
C. 30



Answer :

To solve the problem of adding [tex]\(10 \frac{3}{7}\)[/tex] and [tex]\(19 \frac{5}{9}\)[/tex], follow these detailed steps:

1. Convert the mixed numbers to improper fractions:
- For [tex]\(10 \frac{3}{7}\)[/tex], first convert the integer part to a fraction:
[tex]\[ 10 \frac{3}{7} = 10 + \frac{3}{7} \][/tex]
To add these, convert 10 into a fraction with a denominator of 7:
[tex]\[ 10 = \frac{70}{7} \][/tex]
Now add the fractions:
[tex]\[ 10 \frac{3}{7} = \frac{70}{7} + \frac{3}{7} = \frac{70 + 3}{7} = \frac{73}{7} \][/tex]

- For [tex]\(19 \frac{5}{9}\)[/tex], convert the integer part to a fraction:
[tex]\[ 19 \frac{5}{9} = 19 + \frac{5}{9} \][/tex]
Convert 19 into a fraction with a denominator of 9:
[tex]\[ 19 = \frac{171}{9} \][/tex]
Add the fractions:
[tex]\[ 19 \frac{5}{9} = \frac{171}{9} + \frac{5}{9} = \frac{176}{9} \][/tex]

2. Add the improper fractions:
[tex]\[ \frac{73}{7} + \frac{176}{9} \][/tex]
To add these fractions, find a common denominator. The least common multiple (LCM) of 7 and 9 is 63.

- Convert each fraction to have this common denominator:
[tex]\[ \frac{73}{7} = \frac{73 \times 9}{7 \times 9} = \frac{657}{63} \][/tex]
[tex]\[ \frac{176}{9} = \frac{176 \times 7}{9 \times 7} = \frac{1232}{63} \][/tex]

Now add the numerators together:
[tex]\[ \frac{657}{63} + \frac{1232}{63} = \frac{657 + 1232}{63} = \frac{1889}{63} \][/tex]

3. Convert the result back to a mixed number:
- Divide [tex]\(1889\)[/tex] by [tex]\(63\)[/tex] to find the whole number and the fraction:
[tex]\[ 1889 \div 63 \approx 29.984126984126988 \][/tex]
This implies that the mixed number will have 29 as the integer part, and the fractional part is calculated as:
[tex]\[ 1889 - (29 \times 63) = 1889 - 1827 = 62 \][/tex]
So the fraction part is:
[tex]\[ \frac{62}{63} \][/tex]

4. Simplify if needed:
- The fraction [tex]\(\frac{62}{63}\)[/tex] is already in its simplest form since 62 and 63 are coprime (i.e., their greatest common divisor is 1).

5. Write the final answer:
The final result of the addition [tex]\(10 \frac{3}{7} + 19 \frac{5}{9}\)[/tex] is:
[tex]\[ 29 \frac{62}{63} \][/tex]

So, [tex]\( 10 \frac{3}{7} + 19 \frac{5}{9} = 29 \frac{62}{63} \)[/tex].