The table represents the function [tex]\( f(x) \)[/tex].
[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $f(x)$ \\
\hline
-3 & -9 \\
\hline
-2 & -6 \\
\hline
-1 & -3 \\
\hline
0 & 0 \\
\hline
1 & 3 \\
\hline
2 & 6 \\
\hline
3 & 9 \\
\hline
\end{tabular}
\][/tex]

What is [tex]\( f(3) \)[/tex]?

A. [tex]\(-9\)[/tex]

B. [tex]\(-1\)[/tex]

C. 1

D. 9



Answer :

To determine the value of [tex]\( f(3) \)[/tex] using the provided table, you simply need to refer to the row where [tex]\( x = 3 \)[/tex].

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -3 & -9 \\ \hline -2 & -6 \\ \hline -1 & -3 \\ \hline 0 & 0 \\ \hline 1 & 3 \\ \hline 2 & 6 \\ \hline 3 & 9 \\ \hline \end{array} \][/tex]

Look at the value in the column where [tex]\( x = 3 \)[/tex]. According to the table, when [tex]\( x = 3 \)[/tex], [tex]\( f(x) = 9 \)[/tex].

Therefore, [tex]\( f(3) = 9 \)[/tex].

The correct answer is:
[tex]\[ \boxed{9} \][/tex]