Solve for [tex][tex]$x$[/tex][/tex] in the equation [tex][tex]$\log_{10}(7x - 3) + 2 \log_{10} 5 = 2 + \log_{10}(x + 3)$[/tex][/tex].

(6 marks)



Answer :

To solve the equation [tex]\(\log_{10}(7x-3) + 2\log_{10}5 = 2 + \log_{10}(x+3)\)[/tex], we need to follow a step-by-step process, using the properties of logarithms.

### Step 1: Simplify the logarithmic terms

We have:
[tex]\[ \log_{10}(7x-3) + 2\log_{10}5 \][/tex]
Using the logarithmic identity [tex]\(a \log_b c = \log_b(c^a)\)[/tex], we can rewrite [tex]\(2\log_{10}5\)[/tex] as:
[tex]\[ 2\log_{10}5 = \log_{10}(5^2) = \log_{10}25 \][/tex]

So, the left-hand side of the equation becomes:
[tex]\[ \log_{10}(7x-3) + \log_{10}25 \][/tex]

### Step 2: Use the product property of logarithms

Next, apply the product rule for logarithms, which states [tex]\(\log_b(a) + \log_b(c) = \log_b(ac)\)[/tex]:

[tex]\[ \log_{10}(7x-3) + \log_{10}25 = \log_{10}((7x-3) \cdot 25) \][/tex]

So, the equation now looks like this:
[tex]\[ \log_{10}((7x-3) \cdot 25) = 2 + \log_{10}(x+3) \][/tex]

### Step 3: Isolate the logarithmic terms

To proceed, move [tex]\(\log_{10}(x+3)\)[/tex] to the left side:

[tex]\[ \log_{10}((7x-3) \cdot 25) - \log_{10}(x+3) = 2 \][/tex]

Using the quotient property of logarithms, which states [tex]\(\log_b(a) - \log_b(c) = \log_b\left(\frac{a}{c}\)[/tex]\):

[tex]\[ \log_{10}\left(\frac{(7x-3) \cdot 25}{x+3}\right) = 2 \][/tex]

### Step 4: Convert the logarithmic equation to an exponential equation

Recall the base-10 logarithm definition: if [tex]\(\log_{10}(A) = B\)[/tex], then [tex]\(A = 10^B\)[/tex].

Here:
[tex]\[ \log_{10}\left(\frac{(7x-3) \cdot 25}{x+3}\right) = 2 \][/tex]

This implies:
[tex]\[ \frac{(7x-3) \cdot 25}{x+3} = 10^2 = 100 \][/tex]

### Step 5: Solve the resulting rational equation

We now have:
[tex]\[ \frac{(7x-3) \cdot 25}{x+3} = 100 \][/tex]

To clear the fraction, multiply both sides by [tex]\(x+3\)[/tex]:

[tex]\[ (7x-3) \cdot 25 = 100(x+3) \][/tex]

Expand and simplify:

[tex]\[ 175x - 75 = 100x + 300 \][/tex]

Collect all [tex]\(x\)[/tex] terms on one side and constant terms on the other:

[tex]\[ 175x - 100x = 300 + 75 \][/tex]

[tex]\[ 75x = 375 \][/tex]

Solve for [tex]\(x\)[/tex]:

[tex]\[ x = \frac{375}{75} = 5 \][/tex]

### Step 6: Check the solution

We need to verify that [tex]\(x = 5\)[/tex] is valid by plugging it back into the original equation.

For [tex]\(x = 5\)[/tex]:
[tex]\[ \log_{10}(7(5)-3) + 2\log_{10}5 = 2 + \log_{10}(5+3) \][/tex]

Evaluate each term:
[tex]\[ \log_{10}(32) + 2\log_{10}5 = 2 + \log_{10}(8) \][/tex]

Since [tex]\(2\log_{10}5 = \log_{10}(25)\)[/tex], the left side becomes:
[tex]\[ \log_{10}(32) + \log_{10}(25) = \log_{10}(32 \cdot 25) = \log_{10}(800) \][/tex]

The right side is:
[tex]\[ 2 + \log_{10}8 = 2 + \log_{10}8 \][/tex]

Since:
[tex]\[ 2 = \log_{10}(100) \][/tex]

[tex]\[ \log_{10}(100 \cdot 8) = \log_{10}(800) \][/tex]

Both sides match, confirming [tex]\(x = 5\)[/tex] is indeed a solution.

### Conclusion

The solution to the equation [tex]\(\log_{10}(7x-3) + 2\log_{10}5 = 2 + \log_{10}(x+3)\)[/tex] is [tex]\(\boxed{x = 5}\)[/tex].