Answer :

To solve the equation [tex]\( |x - 6| = 13 \)[/tex], we need to consider the definition of the absolute value function. The absolute value of a number [tex]\( a \)[/tex] is defined as:

[tex]\[ |a| = \begin{cases} a & \text{if } a \geq 0 \\ -a & \text{if } a < 0 \end{cases} \][/tex]

Given the equation [tex]\( |x - 6| = 13 \)[/tex], this tells us two possible scenarios:

1. [tex]\( x - 6 = 13 \)[/tex]
2. [tex]\( x - 6 = -13 \)[/tex]

Let's solve these two cases one by one:

### Case 1: [tex]\( x - 6 = 13 \)[/tex]
[tex]\[ x - 6 = 13 \][/tex]

To isolate [tex]\( x \)[/tex], add 6 to both sides:
[tex]\[ x = 13 + 6 \][/tex]
[tex]\[ x = 19 \][/tex]

### Case 2: [tex]\( x - 6 = -13 \)[/tex]
[tex]\[ x - 6 = -13 \][/tex]

To isolate [tex]\( x \)[/tex], add 6 to both sides:
[tex]\[ x = -13 + 6 \][/tex]
[tex]\[ x = -7 \][/tex]

Therefore, the solution to the equation [tex]\( |x - 6| = 13 \)[/tex] is:

[tex]\[ x = 19 \quad \text{or} \quad x = -7 \][/tex]

So, the final answer is:

[tex]\[ \{19, -7\} \][/tex]