Graph the function [tex][tex]$y=\left(\frac{1}{2}\right)^{x-1}-7$[/tex][/tex] using the given table of values.

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-10 & 2041 \\
\hline
-9 & 1017 \\
\hline
-8 & 505 \\
\hline
-7 & 249 \\
\hline
-6 & 121 \\
\hline
-5 & 57 \\
\hline
-4 & 25 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-3 & 9 \\
\hline
-2 & 1 \\
\hline
-1 & -3 \\
\hline
0 & -5 \\
\hline
1 & -6 \\
\hline
2 & -6.5 \\
\hline
3 & -6.75 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
4 & -6.875 \\
\hline
5 & -6.9375 \\
\hline
6 & -6.96875 \\
\hline
7 & -6.984375 \\
\hline
8 & -6.9921875 \\
\hline
9 & -6.9960937 \\
\hline
10 & -6.9980469 \\
\hline
\end{tabular}

Equation of asymptote:
[tex]y=\square[/tex]



Answer :

To graph the function [tex]\( y = \left( \frac{1}{2} \right)^{x-1} - 7 \)[/tex] and analyze its behavior using the given table of values, follow these steps:

### Step-by-Step Solution:

1. Understanding the Function:
- The function is [tex]\( y = \left( \frac{1}{2} \right)^{x-1} - 7 \)[/tex].

2. Table of Values:
- The given table of values shows the outputs for a wide range of [tex]\( x \)[/tex] values from [tex]\( -10 \)[/tex] to [tex]\( 10 \)[/tex].
- Notice the significant drop in [tex]\( y \)[/tex] values as [tex]\( x \)[/tex] increases.

[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -10 & 2041 \\ \hline -9 & 1017 \\ \hline -8 & 505 \\ \hline -7 & 249 \\ \hline -6 & 121 \\ \hline -5 & 57 \\ \hline -4 & 25 \\ \hline -3 & 9 \\ \hline -2 & 1 \\ \hline -1 & -3 \\ \hline 0 & -5 \\ \hline 1 & -6 \\ \hline 2 & -6.5 \\ \hline 3 & -6.75 \\ \hline 4 & -6.875 \\ \hline 5 & -6.9375 \\ \hline 6 & -6.96875 \\ \hline 7 & -6.984375 \\ \hline 8 & -6.9921875 \\ \hline 9 & -6.9960937 \\ \hline 10 & -6.9980469 \\ \hline \end{array} \][/tex]

3. Identifying the Asymptote:
- An asymptote is a line that the graph of a function approaches but never touches.
- For exponential functions of the form [tex]\( y = a \cdot b^{x} + c \)[/tex], where [tex]\( b \)[/tex] is a fraction between 0 and 1, the horizontal asymptote [tex]\( y \)[/tex] is [tex]\( c \)[/tex].
- In this function, as [tex]\( x \)[/tex] approaches infinity, [tex]\( \left( \frac{1}{2} \right)^{x-1} \)[/tex] approaches 0.
- Therefore, the asymptote is [tex]\( y = -7 \)[/tex].

4. Final Answer:
[tex]\[ y = -7 \][/tex]

So, the equation of the asymptote is:
[tex]\[ y = -7 \][/tex]