Find the equation of a line that is perpendicular to [tex]y = 2x + 1[/tex] and passes through the point [tex]\((4,6)\)[/tex].

A. [tex]y = 2x - 2[/tex]
B. [tex]y = 3x + 3[/tex]
C. [tex]y = 4x - 9[/tex]
D. [tex]y = -\frac{1}{2}x + 8[/tex]



Answer :

To find the equation of a line that is perpendicular to [tex]\( y = 2x + 1 \)[/tex] and passes through the point [tex]\( (4,6) \)[/tex]:

1. Determine the slope of the given line: The given line is in slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope. Here, [tex]\( y = 2x + 1 \)[/tex] has a slope [tex]\( m = 2 \)[/tex].

2. Find the slope of the perpendicular line: The slope of a line perpendicular to another is the negative reciprocal of the original slope. The negative reciprocal of [tex]\( 2 \)[/tex] is [tex]\( -\frac{1}{2} \)[/tex].

3. Use the point-slope form of the equation of a line: The point-slope form is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\( (x_1, y_1) \)[/tex] is a point on the line and [tex]\( m \)[/tex] is the slope. Substitute [tex]\( m = -\frac{1}{2} \)[/tex] and the point [tex]\( (4, 6) \)[/tex].

4. Substitute the values into the point-slope form:
[tex]\[ y - 6 = -\frac{1}{2}(x - 4) \][/tex]

5. Simplify the equation:
[tex]\[ y - 6 = -\frac{1}{2}x + 2 \][/tex]
Adding 6 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{1}{2}x + 2 + 6 \][/tex]
[tex]\[ y = -\frac{1}{2}x + 8 \][/tex]

6. Determine the correct option: The equation we derived is [tex]\( y = -\frac{1}{2}x + 8 \)[/tex]. Among the given options, this matches the fourth option:
[tex]\[ \boxed{y = -\frac{1}{2}x + 8} \][/tex]

Hence, the equation of the line that is perpendicular to [tex]\( y = 2x + 1 \)[/tex] and passes through the point [tex]\( (4, 6) \)[/tex] is [tex]\( y = -\frac{1}{2}x + 8 \)[/tex]. The correct answer is:
[tex]\[ \boxed{4} \][/tex]