Bassima evaluated the expression below.

[tex]\[
\begin{array}{l}
2(12-14)^2-(-5)+12 \\
2(-2)^2-(-5)+12 \\
2(-4)-(-5)+12 \\
-8+5+12 \\
9
\end{array}
\][/tex]

What was Bassima's error?

A. Bassima did not multiply 2 and 12 first.
B. Bassima evaluated [tex]\(-(-5)\)[/tex] as 5.
C. Bassima added and subtracted before multiplying.
D. Bassima evaluated [tex]\((-2)^2\)[/tex] as -4.



Answer :

Let's walk through the correct steps to evaluate the expression [tex]\(2(12-14)^2-(-5)+12\)[/tex] and identify where Bassima made a mistake.

1. Evaluate inside the parentheses:
[tex]\[ 12 - 14 = -2 \][/tex]

2. Square the result:
[tex]\[ (-2)^2 = 4 \][/tex]

3. Multiply by 2:
[tex]\[ 2 \times 4 = 8 \][/tex]

4. Evaluate [tex]\(-(-5)\)[/tex]:
[tex]\[ -(-5) = 5 \][/tex]

5. Add the results and 12:
[tex]\[ 8 + 5 + 12 = 25 \][/tex]

So, the correct final result is [tex]\(25\)[/tex].

Bassima’s steps were:
- [tex]\( 2(12-14)^2-(-5)+12 \)[/tex]
- [tex]\( 2(-2)^2-(-5)+12 \)[/tex]
- [tex]\( 2(-4)-(-5)+12 \)[/tex]
- [tex]\( -8+5+12 \)[/tex]
- [tex]\( 9 \)[/tex]

The error occurred when Bassima evaluated [tex]\((-2)^2\)[/tex]. Instead of correctly evaluating [tex]\((-2)^2\)[/tex] as [tex]\(4\)[/tex], Bassima evaluated it incorrectly as [tex]\(-4\)[/tex].

Therefore, Bassima's error was:
Bassima evaluated [tex]\((-2)^2\)[/tex] as -4.